期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
1
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
下载PDF
Cu掺杂对Pr1.8La0.2Ni0.95Al0.05O4+δ阴极材料性能的影响
2
作者 曲亮武 《科技风》 2019年第19期237-238,共2页
本文通过溶胶-凝胶法成功制备了Pr1.8La0.2Ni0.95Al0.05O4+δ和Pr1.8La0.2Ni0.85Cu0.1Al0.05O4+δ材料,并使用XRD衍射仪、热膨胀仪和电化学工作站分别测试了材料的物相结构、热膨胀性能以及电化学性能。测试结果表明,Cu的掺杂不会影响... 本文通过溶胶-凝胶法成功制备了Pr1.8La0.2Ni0.95Al0.05O4+δ和Pr1.8La0.2Ni0.85Cu0.1Al0.05O4+δ材料,并使用XRD衍射仪、热膨胀仪和电化学工作站分别测试了材料的物相结构、热膨胀性能以及电化学性能。测试结果表明,Cu的掺杂不会影响材料的物相结构,对热膨胀性能影响较小,但能够有效改善材料的电化学性能。Pr1.8La0.2Ni0.95Al0.05O4+δ和Pr1.8La0.2Ni0.85Cu0.1Al0.05O4+δ材料制备的单电池在800℃下的最大输出功率密度分别达到了451和644mW cm-2,是固体氧化物燃料电池的理想阴极材料。 展开更多
关键词 阴极材料 电化学性能 CU掺杂
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部