针对光纤振动信号有噪声干扰、识别信号类型准确率不高且识别时间长的问题,提出了基于奇异值分解(singular value decomposition,SVD)和改进粒子群优化支持向量机(modified particle swarm optimization support vector machine,MPSO-S...针对光纤振动信号有噪声干扰、识别信号类型准确率不高且识别时间长的问题,提出了基于奇异值分解(singular value decomposition,SVD)和改进粒子群优化支持向量机(modified particle swarm optimization support vector machine,MPSO-SVM)的识别方法。首先,采用SVD对信号去噪,根据奇异值序列二阶差分谱单边极小值原则确定信号重构秩阶次。其次,提取振动信号特征,利用串行特征融合(serial feature fusion,SFF)方法组建特征向量组。最后,利用MPSO-SVM进行分类识别,提高识别精度和算法效率。采用实测信号进行验证,结果表明,信噪比有明显提升,信号平均识别率较粒子群优化支持向量机(particle swarm optimization support vector machine,PSO-SVM)提升5%。该方法较传统神经网络识别方法有较好的效果,具有实际应用价值。展开更多
文摘在使用经验模式分解(Empirical Mode Decomposition,EMD)对激光雷达回波信号进行去噪处理时,由于信号含有脉冲及间歇等间断事件而产生模态混叠,导致不能很好地分解出有用信号成分,影响去噪效果。针对这一问题,提出了一种形态滤波与EMD相结合的组合算法。首先,使用自适应多尺度形态滤波器作为前置单元,对信号进行初步处理,剔除信号中的间断事件干扰。之后,应用EMD对处理过的信号去噪。采用仿真数据及真实激光雷达回波数据进行了去噪实验。实验结果表明,文中算法相比于直接EMD去噪,在仿真试验中信噪比提高了8.89 d B,均方根误差降低了0.0514;在真实回波数据去噪实验中,6 km以后平均信噪比提高了3.356 4 d B。该组合算法有效地抑制了模态混叠现象,具有良好的去噪效果及应用前景。