机场飞行区现使用的场面监视方法存在着定位偏差较大、不稳定、易跳变、皆为点源定位等问题。针对这些问题,设计了基于视觉图像的飞行区监视方法,实现快速准确的目标检测和轮廓定位,使飞行区监视更加稳定精确。提出了一种基于MobileNetV...机场飞行区现使用的场面监视方法存在着定位偏差较大、不稳定、易跳变、皆为点源定位等问题。针对这些问题,设计了基于视觉图像的飞行区监视方法,实现快速准确的目标检测和轮廓定位,使飞行区监视更加稳定精确。提出了一种基于MobileNetV3和YOLOv5的网络模型(以下称为MobileNetV3-YOLOv5),即在YOLOv5的主干中使用MobileNetV3,来提高对目标的检测速度和准确度;提出了一种基于优化特征点提取的改进定向快速旋转简报(Oriented FAST and Rotated BRIEF,ORB)算法,将图像分割成多个区域,分别提取每个区域的特征点,从而提高目标识别框内区域的特征点识别数量,再进行特征点聚类筛选,最后根据识别目标类型采用最小包围盒进行轮廓划分,得到目标的轮廓定位。试验结果表明:MobileNetV3-YOLOv5方法对比原始YOLOv5模型,在识别目标准确率方面提升5百分点,在效率方面提升14张/s;同时在0~60 m的范围内,轮廓估计误差仅为2.9%;体现了所提出的监视方法的有效性,可以提升飞行区监视定位准确性和运行安全性。展开更多
针对现有联邦学习后门防御方法不能实现对模型已嵌入后门特征的有效清除同时会降低主任务准确率的问题,提出了一种基于对比训练的联邦学习后门防御方法 Contra FL。利用对比训练来破坏后门样本在特征空间中的聚类过程,使联邦学习全局模...针对现有联邦学习后门防御方法不能实现对模型已嵌入后门特征的有效清除同时会降低主任务准确率的问题,提出了一种基于对比训练的联邦学习后门防御方法 Contra FL。利用对比训练来破坏后门样本在特征空间中的聚类过程,使联邦学习全局模型分类结果与后门触发器特征无关。具体而言,服务器通过执行触发器生成算法构造生成器池,以还原全局模型训练样本中可能存在的后门触发器;进而,服务器将触发器生成器池下发给各参与方,各参与方将生成的后门触发器添加至本地样本,以实现后门数据增强,最终通过对比训练有效消除后门攻击的负面影响。实验结果表明,Contra FL能够有效防御联邦学习中的多种后门攻击,且效果优于现有防御方法。展开更多
文摘机场飞行区现使用的场面监视方法存在着定位偏差较大、不稳定、易跳变、皆为点源定位等问题。针对这些问题,设计了基于视觉图像的飞行区监视方法,实现快速准确的目标检测和轮廓定位,使飞行区监视更加稳定精确。提出了一种基于MobileNetV3和YOLOv5的网络模型(以下称为MobileNetV3-YOLOv5),即在YOLOv5的主干中使用MobileNetV3,来提高对目标的检测速度和准确度;提出了一种基于优化特征点提取的改进定向快速旋转简报(Oriented FAST and Rotated BRIEF,ORB)算法,将图像分割成多个区域,分别提取每个区域的特征点,从而提高目标识别框内区域的特征点识别数量,再进行特征点聚类筛选,最后根据识别目标类型采用最小包围盒进行轮廓划分,得到目标的轮廓定位。试验结果表明:MobileNetV3-YOLOv5方法对比原始YOLOv5模型,在识别目标准确率方面提升5百分点,在效率方面提升14张/s;同时在0~60 m的范围内,轮廓估计误差仅为2.9%;体现了所提出的监视方法的有效性,可以提升飞行区监视定位准确性和运行安全性。
文摘针对现有联邦学习后门防御方法不能实现对模型已嵌入后门特征的有效清除同时会降低主任务准确率的问题,提出了一种基于对比训练的联邦学习后门防御方法 Contra FL。利用对比训练来破坏后门样本在特征空间中的聚类过程,使联邦学习全局模型分类结果与后门触发器特征无关。具体而言,服务器通过执行触发器生成算法构造生成器池,以还原全局模型训练样本中可能存在的后门触发器;进而,服务器将触发器生成器池下发给各参与方,各参与方将生成的后门触发器添加至本地样本,以实现后门数据增强,最终通过对比训练有效消除后门攻击的负面影响。实验结果表明,Contra FL能够有效防御联邦学习中的多种后门攻击,且效果优于现有防御方法。