In order to grasp the evolution of flight conflict amount accurately and to forecast the amount, chaos in flight conflicts is studied. Firstly, a fault tree of flight conflicts is established based on the man-machine-...In order to grasp the evolution of flight conflict amount accurately and to forecast the amount, chaos in flight conflicts is studied. Firstly, a fault tree of flight conflicts is established based on the man-machine-environ- ment system engineering theory. The chaotic characteristics of flight conflict are analyzed from the qualitative point of view. Secondly, an improved chaotic algorithm for the largest Lyapunov exponent is proposed based on the small-data method and the wavelet de-noising theory. Chaos in flight conflict time series is identified by the improved chaotic algorithm from the quantitative point of view. Finally, a case study by the chaos forecasting al- gorithm is performed and the results are evaluated by the gray error checking : Correlative value of posterior error is 0. 220 9〈0. 35, and micro-error probability is 0. 985 3〉0.95. Such results show the chaos forecasting algo- rithm is effective, thus it is feasible to analyze and forecast flight conflict by chaotic theory.展开更多
基金Supported by the Joint Funds of National Natural Science Foundation of China(61039001)~~
文摘In order to grasp the evolution of flight conflict amount accurately and to forecast the amount, chaos in flight conflicts is studied. Firstly, a fault tree of flight conflicts is established based on the man-machine-environ- ment system engineering theory. The chaotic characteristics of flight conflict are analyzed from the qualitative point of view. Secondly, an improved chaotic algorithm for the largest Lyapunov exponent is proposed based on the small-data method and the wavelet de-noising theory. Chaos in flight conflict time series is identified by the improved chaotic algorithm from the quantitative point of view. Finally, a case study by the chaos forecasting al- gorithm is performed and the results are evaluated by the gray error checking : Correlative value of posterior error is 0. 220 9〈0. 35, and micro-error probability is 0. 985 3〉0.95. Such results show the chaos forecasting algo- rithm is effective, thus it is feasible to analyze and forecast flight conflict by chaotic theory.