最新研究表明,为了实现《巴黎协定》制定的1.5或2℃低温升目标,温室气体浓度需要在增长到某个峰值后逐渐下降.利用第五次国际间耦合模式比较计划(CMIP5)中气候模式和理想的一维两盒模型的模拟结果,研究了全球变暖下海洋混合层的快速响...最新研究表明,为了实现《巴黎协定》制定的1.5或2℃低温升目标,温室气体浓度需要在增长到某个峰值后逐渐下降.利用第五次国际间耦合模式比较计划(CMIP5)中气候模式和理想的一维两盒模型的模拟结果,研究了全球变暖下海洋混合层的快速响应和深层海洋的缓慢响应及其对低温升目标的影响.多模式平均结果显示,在辐射强迫先增长后稳定情景(RCP4.5)下,全球表面平均温度(global mean surface temperature,GMST)会以先快后慢两种速率增长;而在辐射强迫先增长后减弱情景(RCP2.6)下,GMST会先快速增长,然后缓慢下降,且在2050~2100年间基本保持不变.这是由于不同情景下,GMST的变化特征由海洋快、慢响应在各个阶段的贡献比例所决定.RCP2.6情景下,GMST在2100年的温升值为1.83℃,对应辐射强迫下降阶段;而在RCP4.5情景下,GMST同样达到该温升值的时间为2033年,对应辐射强迫增长阶段.虽然两个时刻的GMST温升相同,气候系统在两种情景下的响应却有很大区别.其中,由热膨胀导致的全球海平面平均升高幅度在RCP2.6中要远高于RCP4.5,表面增温的空间结构也存在重要差异.在CMIP5使用的大多数未来情景中,多模式平均预估的1.5和2℃温升目标到达时间都远远早于2100年,这意味着如果利用这些情景下的结果来类比21世纪末低温升目标下的情况,会严重低估海洋慢响应过程的气候效应.展开更多
文摘最新研究表明,为了实现《巴黎协定》制定的1.5或2℃低温升目标,温室气体浓度需要在增长到某个峰值后逐渐下降.利用第五次国际间耦合模式比较计划(CMIP5)中气候模式和理想的一维两盒模型的模拟结果,研究了全球变暖下海洋混合层的快速响应和深层海洋的缓慢响应及其对低温升目标的影响.多模式平均结果显示,在辐射强迫先增长后稳定情景(RCP4.5)下,全球表面平均温度(global mean surface temperature,GMST)会以先快后慢两种速率增长;而在辐射强迫先增长后减弱情景(RCP2.6)下,GMST会先快速增长,然后缓慢下降,且在2050~2100年间基本保持不变.这是由于不同情景下,GMST的变化特征由海洋快、慢响应在各个阶段的贡献比例所决定.RCP2.6情景下,GMST在2100年的温升值为1.83℃,对应辐射强迫下降阶段;而在RCP4.5情景下,GMST同样达到该温升值的时间为2033年,对应辐射强迫增长阶段.虽然两个时刻的GMST温升相同,气候系统在两种情景下的响应却有很大区别.其中,由热膨胀导致的全球海平面平均升高幅度在RCP2.6中要远高于RCP4.5,表面增温的空间结构也存在重要差异.在CMIP5使用的大多数未来情景中,多模式平均预估的1.5和2℃温升目标到达时间都远远早于2100年,这意味着如果利用这些情景下的结果来类比21世纪末低温升目标下的情况,会严重低估海洋慢响应过程的气候效应.