期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于数据物理混合驱动的超短期风电功率预测模型
1
作者 杨茂 王达 +3 位作者 王小海 范馥麟 高博 王勃 《高电压技术》 EI CAS CSCD 北大核心 2024年第11期5132-5141,共10页
为提升超短期风电功率预测精度,提出一种数据-物理混合驱动的超短期风电功率预测方法。首先,构建一种融合双向门控循环单元的残差网络结构,将其在测试集的预测结果作为预测模板。然后,根据风速-风电转换特性,基于多项式-线性回归模型拟... 为提升超短期风电功率预测精度,提出一种数据-物理混合驱动的超短期风电功率预测方法。首先,构建一种融合双向门控循环单元的残差网络结构,将其在测试集的预测结果作为预测模板。然后,根据风速-风电转换特性,基于多项式-线性回归模型拟合风电场风速-功率曲线,在风速高波动时点,以物理机理透明的风速-功率曲线进行预测。最后,根据风速波动阈值建立不同模型之间的动态切换机制,按切换的时点修改模板预测值,对于修正风速小于切入风速的时点,将预测值置零。在吉林省某装机容量为400.5 MW的风电场提供的数据上进行仿真实验得到,测试集第16步预测的平均归一化均方根误差为0.1589,全部切换中有利切换占比达到90.86%,验证了提出的超短期风电功率预测模型的有效性和适用性。 展开更多
关键词 风电场 超短期预测 数据物理混合驱动 切换机制 波动阈值 深度残差网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部