期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于光学特性参数反演的绿萝叶绿素含量估测研究 被引量:7
1
作者 王浩云 曹雪莲 +3 位作者 孙云晓 闫明壮 王江波 徐焕良 《农业机械学报》 EI CAS CSCD 北大核心 2021年第3期202-209,共8页
为快速准确检测植物体叶绿素含量,提出一种基于MMD迁移的光学特性参数反演方法。以绿萝叶片为研究对象,仿真光子在基于蒙特卡洛方法的单层平板模型上的运动轨迹,获得12 000幅绿萝叶片仿真光亮度分布图,利用卷积神经网络对模拟光谱数据... 为快速准确检测植物体叶绿素含量,提出一种基于MMD迁移的光学特性参数反演方法。以绿萝叶片为研究对象,仿真光子在基于蒙特卡洛方法的单层平板模型上的运动轨迹,获得12 000幅绿萝叶片仿真光亮度分布图,利用卷积神经网络对模拟光谱数据进行训练,得到预训练模型;基于预训练模型进行迁移学习,在少量实测绿萝叶片光谱数据上对模型进行微调,进行绿萝光学参数反演,得到吸收系数μa反演准确率为84.83%、散射系数μs反演准确率为83.33%;在此基础上引入最大均值差异方法,提升迁移效果。结果表明,与普通的模型迁移方法相比,基于MMD迁移的方法具有更好的反演效果,吸收系数μa反演准确率为87.55%,散射系数μs反演准确率为86.67%。利用MMD迁移得到的全连接层特征建立叶绿素回归模型的决定系数R~2为0.931 0,分别比直接使用光学参数和光谱图像建立的模型决定系数R2高0.046 8和0.062 0。研究表明,基于光学特性参数反演方法可以为叶绿素含量无损估测研究提供参考。 展开更多
关键词 绿萝 叶绿素含量 高光谱图像 光学特性参数 蒙特卡洛方法 迁移学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部