针对钢材表面缺陷检测中小目标缺陷检测效果不理想、特征提取不充分的问题,以YOLOv5算法为基础,提出一种YOLOv5s-ADW算法。将自注意力与卷积混合模块(a mixed model of self-attention and convolution,ACmix)融入主干网络层,增强模型...针对钢材表面缺陷检测中小目标缺陷检测效果不理想、特征提取不充分的问题,以YOLOv5算法为基础,提出一种YOLOv5s-ADW算法。将自注意力与卷积混合模块(a mixed model of self-attention and convolution,ACmix)融入主干网络层,增强模型的特征敏感度;在特征融合层中加入可变形大内核注意力机制(deformable large kernel attention,D-LKA),增强模型对图像中不规则缺陷的捕捉能力;将原损失函数替换为Wise-IoU损失函数,降低数据集中低质量示例对模型检测效果的影响并提升小目标缺陷检测能力,在NEU-DET上进行实验验证。实验验证结果表明:YOLOv5s-ADW算法的平均精度均值(mean average precision,mAP)达到88.3%,相较原始模型提升了14.4%;小目标缺陷和漏检率高的缺陷平均精度(average precision,AP)也有较大提升,相比其他主流算法,能够更好解决上述问题。展开更多
文摘针对钢材表面缺陷检测中小目标缺陷检测效果不理想、特征提取不充分的问题,以YOLOv5算法为基础,提出一种YOLOv5s-ADW算法。将自注意力与卷积混合模块(a mixed model of self-attention and convolution,ACmix)融入主干网络层,增强模型的特征敏感度;在特征融合层中加入可变形大内核注意力机制(deformable large kernel attention,D-LKA),增强模型对图像中不规则缺陷的捕捉能力;将原损失函数替换为Wise-IoU损失函数,降低数据集中低质量示例对模型检测效果的影响并提升小目标缺陷检测能力,在NEU-DET上进行实验验证。实验验证结果表明:YOLOv5s-ADW算法的平均精度均值(mean average precision,mAP)达到88.3%,相较原始模型提升了14.4%;小目标缺陷和漏检率高的缺陷平均精度(average precision,AP)也有较大提升,相比其他主流算法,能够更好解决上述问题。