氢是推动海上水、风、光、电资源清洁高效利用的理想媒介,构建深海氢能产业体系对保障能源的供应安全、实现“双碳”目标、促进能源领域企业转型升级具有重要意义。为了开展氢能等海上新能源的实验教学活动,加深学生对机械设计基础(含...氢是推动海上水、风、光、电资源清洁高效利用的理想媒介,构建深海氢能产业体系对保障能源的供应安全、实现“双碳”目标、促进能源领域企业转型升级具有重要意义。为了开展氢能等海上新能源的实验教学活动,加深学生对机械设计基础(含课程设计)、流体力学(含实验)、氢能及新型能源动力系统、氢能存储与利用等专业课程内容的掌握,该文设计了应用于海上氢气液化系统(liquid hydrogen floating production storage and offloading unit,FLH2)的浮式多孔介质通道内外流动实验装置,包括浮式通道内多孔介质流动阻力测试实验装置与浮式通道外降膜流动测试实验装置两个部分。该装置具有较好的实验教学效果,可提升学生的工程实践能力和研究海洋能源高效利用领域的创新能力,拓展学生在深海氢能储运方面的知识储备。展开更多
[目的]杂质的存在会影响CO_(2)的相平衡性质,进而影响CO_(2)管道输送安全。随着CCUS(Carbon Capture,Utilization and Storage)技术的进一步应用,含杂质CO_(2)体系相平衡研究对推广CCUS技术至关重要。[方法]自主设计了一套基于气体、液...[目的]杂质的存在会影响CO_(2)的相平衡性质,进而影响CO_(2)管道输送安全。随着CCUS(Carbon Capture,Utilization and Storage)技术的进一步应用,含杂质CO_(2)体系相平衡研究对推广CCUS技术至关重要。[方法]自主设计了一套基于气体、液体可压缩性差异的含杂质CO_(2)体系相特性测量实验装置,可以在-30~50℃范围内测量并计算含杂质CO_(2)体系的泡点压力、露点压力。将实验结果与PR方程、GERG-2008方程、BWRS方程、SRK方程、PRSV方程模拟结果进行对比,分析各方程预测精度。[结果]针对不同比例的N2-CO_(2)二元体系,随N2含量增加,各状态方程对于泡点压力、露点压力的预测精度下降。不同温度区间各状态方程预测精度不同,PR方程在0℃以下的泡点压力、露点压力预测精度较高,在0℃及以上,预测精度下降;GERG-2008方程在0℃以下的泡点压力、露点压力预测精度较低,在0℃及以上,预测精度较高;BWRS方程无明显规律性,但对各体系总体预测精度较低;SRK方程在0℃及以下预测精度较低,在0℃以上预测精度较高;PRSV方程在0℃以下预测精度较低,在0℃及以上预测精度较高。[结论]除BWRS方程无明显规律性外,其他方程在不同温度区间表现出不同的预测精度。状态方程优选建议:针对纯CO_(2),在0℃以下推荐使用PR方程,在0℃及以上推荐使用PRSV方程;对于99.5%CO_(2)+0.5%N2的体系,在-20~20℃范围内,推荐使用PR方程;对于96%CO_(2)+4%N_(2)的体系,在-30~20℃范围内,推荐使用PR方程、PRSV方程。展开更多
文摘氢是推动海上水、风、光、电资源清洁高效利用的理想媒介,构建深海氢能产业体系对保障能源的供应安全、实现“双碳”目标、促进能源领域企业转型升级具有重要意义。为了开展氢能等海上新能源的实验教学活动,加深学生对机械设计基础(含课程设计)、流体力学(含实验)、氢能及新型能源动力系统、氢能存储与利用等专业课程内容的掌握,该文设计了应用于海上氢气液化系统(liquid hydrogen floating production storage and offloading unit,FLH2)的浮式多孔介质通道内外流动实验装置,包括浮式通道内多孔介质流动阻力测试实验装置与浮式通道外降膜流动测试实验装置两个部分。该装置具有较好的实验教学效果,可提升学生的工程实践能力和研究海洋能源高效利用领域的创新能力,拓展学生在深海氢能储运方面的知识储备。
文摘[目的]杂质的存在会影响CO_(2)的相平衡性质,进而影响CO_(2)管道输送安全。随着CCUS(Carbon Capture,Utilization and Storage)技术的进一步应用,含杂质CO_(2)体系相平衡研究对推广CCUS技术至关重要。[方法]自主设计了一套基于气体、液体可压缩性差异的含杂质CO_(2)体系相特性测量实验装置,可以在-30~50℃范围内测量并计算含杂质CO_(2)体系的泡点压力、露点压力。将实验结果与PR方程、GERG-2008方程、BWRS方程、SRK方程、PRSV方程模拟结果进行对比,分析各方程预测精度。[结果]针对不同比例的N2-CO_(2)二元体系,随N2含量增加,各状态方程对于泡点压力、露点压力的预测精度下降。不同温度区间各状态方程预测精度不同,PR方程在0℃以下的泡点压力、露点压力预测精度较高,在0℃及以上,预测精度下降;GERG-2008方程在0℃以下的泡点压力、露点压力预测精度较低,在0℃及以上,预测精度较高;BWRS方程无明显规律性,但对各体系总体预测精度较低;SRK方程在0℃及以下预测精度较低,在0℃以上预测精度较高;PRSV方程在0℃以下预测精度较低,在0℃及以上预测精度较高。[结论]除BWRS方程无明显规律性外,其他方程在不同温度区间表现出不同的预测精度。状态方程优选建议:针对纯CO_(2),在0℃以下推荐使用PR方程,在0℃及以上推荐使用PRSV方程;对于99.5%CO_(2)+0.5%N2的体系,在-20~20℃范围内,推荐使用PR方程;对于96%CO_(2)+4%N_(2)的体系,在-30~20℃范围内,推荐使用PR方程、PRSV方程。