期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
中空纳米材料的构建原理及其在光催化制氢和二氧化碳还原反应中的应用 被引量:2
1
作者 李旭力 李宁 +1 位作者 高旸钦 戈磊 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第3期679-707,共29页
随着全球经济的快速发展,能源短缺与环境污染成为当今世界共同关注的热点问题,开发和利用洁净能源成为当务之急.近年,以半导体为基础的光催化技术引起了国内外的广泛关注,其中包括光催化分解水制氢、光催化还原CO_(2)、光催化固氮以及... 随着全球经济的快速发展,能源短缺与环境污染成为当今世界共同关注的热点问题,开发和利用洁净能源成为当务之急.近年,以半导体为基础的光催化技术引起了国内外的广泛关注,其中包括光催化分解水制氢、光催化还原CO_(2)、光催化固氮以及光催化降解污染物等.尤其太阳能驱动的光催化分解水和光催化CO_(2)还原均可将太阳能转化为可储存和运输的化学能源.因此,设计高效稳定的光催化材料具有重要意义.中空结构材料由于具有比表面积大、光吸收效率高以及载流子传输路径缩短等优点,在能量转换领域备受关注,且中空材料的内外表面结构为其它组分的沉积提供了良好的平台.近年来,研究人员设计和合成了大量的多级纳米中空复合材料.本文首先综述了中空材料的一般制备方法:硬模板法、软模板法以及自模板法,并从合成方法的基本概念、合成步骤以及优缺点进行了概述.总结了近年用于光催化领域中典型单一中空结构材料的合成方法和机理,包括中空结构的CdS,Zn_(x)Cd_(1-x)S,g-C_(3)N_(4),TiO_(2),CeO_(2)等体系.但单一催化材料的光生电子-空穴对的复合效率较高,导致其催化性能较低,因此,合理设计和构建多级结构对于提升光催化性能具有重要的意义.其次,对多级结构的中空材料进行了分类,概述了构建策略、光催化制氢以及光催化还原二氧化碳的机制.具有多级结构的中空光催化剂可分为两大类,包括中空助催化剂为基体的材料和中空主光催化剂为基体的材料,其它复杂中空光催体系也基于上述体系的延伸.最后,对中空结构的特征和影响规律的应用实例进行了介绍.同时,对文献报道的探索中空纳米材料光催化机理的有效方法,如表面光电压测试、电子自旋顺磁共振技术、理论计算结合实验等技术手段进行了总结.尽管中空材料在能量转换领域取得了一系列进展,但该领域仍然存在诸多挑战,与实际应用的要求仍然差距较大.中空光催化材料的设计、制备和性能调控需要综合考虑经济、高性能、稳定性和环境友好等因素,为大规模应用提供基础.另一方面,探索光催化机理非常重要,深入进行机理研究不仅有利于设计高效光催化剂,推动表征技术和微观结构分析的进步,还有助于光催化领域的持续发展.综上,本文为新型中空材料的制备和光催化制氢和CO_(2)还原机理的深入探索提供一定的参考和依据. 展开更多
关键词 中空结构 光催化 制氢 CO_(2)还原 设计原理
下载PDF
金属-有机骨架衍生的Ni-CNT/ZnIn_(2)S_(4)异质结用于光催化产氢及其电荷转移途径的确定
2
作者 赖可溱 李丰彦 +2 位作者 李宁 高旸钦 戈磊 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第1期42-43,共2页
氢气是缓解环境污染和能源短缺的零污染绿色能源,利用太阳能诱导半导体裂解水制氢是最环保的方法之一。本文以MOFs衍生的Ni-CNT(Ni修饰的碳纳米管)作为非贵金属助催化剂,通过简单的油浴法原位生长ZnIn_(2)S_(4)纳米片合成了Ni-CNT/ZnIn_... 氢气是缓解环境污染和能源短缺的零污染绿色能源,利用太阳能诱导半导体裂解水制氢是最环保的方法之一。本文以MOFs衍生的Ni-CNT(Ni修饰的碳纳米管)作为非贵金属助催化剂,通过简单的油浴法原位生长ZnIn_(2)S_(4)纳米片合成了Ni-CNT/ZnIn_(2)S_(4)。在Ni-CNT/ZnIn_(2)S_(4)中,Ni纳米颗粒包裹在CNT的顶部和横截面上,有效地阻止了Ni纳米颗粒的团聚。Ni-CNT/ZnIn_(2)S_(4)异质结构具有紧密的接触界面,有利于电荷转移,可作为高效的析氢光催化剂。38Ni-CNT/ZnIn_(2)S_(4)样品具有最佳的产氢性能(12267μmol·h^(−1)·g^(−1)),约为纯ZnIn_(2)S_(4)的6.4倍,且在420 nm单色光下其表观量子效率达到11.3%。X射线衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)结果证实了Ni-CNT/ZnIn_(2)S_(4)异质结构的存在。电化学测试表明,Ni-CNT与ZnIn_(2)S_(4)的结合促进了光生电荷的转移,有效地阻止了光生载流子的快速复合,从而增强了ZnIn_(2)S_(4)的析氢性能。电子自旋共振(ESR)结果进一步证明了Ni-CNT助催化剂的存在延长了ZnIn_(2)S_(4)光生电荷的寿命,促进了光生电荷和空穴的分离效率。通过密度泛函理论计算探索并确定了异质结界面中的电荷转移途径。Ni、CNT和ZnIn_(2)S_(4)费米能级的差异导致界面处电荷发生迁移从而形成内嵌电场,ZnIn_(2)S_(4)的能带向下弯曲,促进光生电子从ZnIn_(2)S_(4)流向NiCNT电子受体。平面平均电子密度差结果证实了热电子从Ni转移至CNT再转移至ZnIn_(2)S_(4),表明光生电子转移途径为ZnIn_(2)S_(4)→CNT→Ni。此外,吸附H*吉布斯自由能(ΔGH*)和晶体轨道哈密顿布居(COHP)结果表明Ni纳米颗粒可作为析氢反应的活性位点,促进了产氢效率。本工作将为开发低成本、高效的非贵金属光催化制氢催化剂提供新的策略。 展开更多
关键词 Ni-CNT 光催化 析氢 ZnIn_(2)S_(4) 助催化剂
下载PDF
新型间接Z字结型g-C3N4/Bi2MoO6/Bi空心微球等离子共振增强光吸收和光催化性能(英文) 被引量:6
3
作者 李宁 高航 +7 位作者 王鑫 赵苏君 吕达 杨国庆 高雪云 樊海宽 高旸钦 戈磊 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期426-434,共9页
半导体光催化技术是目前最有前景的绿色化学技术,可通过利用太阳光降解污染物或制氢.作为有潜力的半导体催化剂,钼酸铋具有合适的带隙(2.58 eV).但是,由于低的量子产量,钼酸铋的光催化性能并不理想.为了提高钼酸铋的光催化性能,研究者... 半导体光催化技术是目前最有前景的绿色化学技术,可通过利用太阳光降解污染物或制氢.作为有潜力的半导体催化剂,钼酸铋具有合适的带隙(2.58 eV).但是,由于低的量子产量,钼酸铋的光催化性能并不理想.为了提高钼酸铋的光催化性能,研究者多考虑采取构造异质结的方式.石墨相氮化碳(g-C3N4)能带位置合适,与多种光催化半导体能带匹配,是构造异质结的常用选择.因此,本文选用g-C3N4与钼酸铋复合,构造异质结结构.为了进一步提高光催化性能,多采用负载贵金属(Pt,Au和Pd)作为助催化剂,利用贵金属特有的等离子共振效应,增加光吸收,促进载流子分离,但贵金属价格昂贵.Bi金属单质价格便宜,具备等效的等离子共振效应,是理想的贵金属替代物.钼酸铋可以采取原位还原的方式还原出Bi单质,构造更紧密的界面结构,更有利于载流子传输.Bi的等离子共振效应可以有效提高材料的光吸收能力和光生载流子分离率.本文采用溶剂热和原位还原方法成功合成了一种新型三元异质结结构g-C3N4/Bi2MoO6/Bi(CN/BMO/Bi)空心微球.结果显示,三元异质结结构的最佳配比为0.4CN/BMO/9Bi,该样品表现出最好的光催化降解罗丹明B效率,是纯钼酸铋的9倍.通过计算DRS和XPS的价带数据,0.4CN/BMO/9Bi是一种Z字型异质结.牺牲试剂实验也提供了Z字型异质结的有力证据,测试显示超氧自由基·O^2-(在-0.33 eV)是光催化降解的主要基团.但是,钼酸铋的导带位置低于-0.33 eV,g-C3N4的导带高于-0.33 eV,因此g-C3N4的导带是唯一的反应位点,从而证明了光生载流子的转移是通过Z字型异质结结构实现的.TEM图显示金属Bi分散在钼酸铋表面.DRS和PL图分析表明金属Bi增加了材料的光吸收能力,同时扮演了中间介质的角色,促进钼酸铋导带的电子和g-C3N4价带的空穴快速复合.因此,g-C3N4/Bi2MoO6/Bi的优异光催化性能主要归功于Z字型异质结和Bi金属的等离子共振吸收效应,提高了材料的光吸收能力和光生载流子分离率. 展开更多
关键词 钼酸铋 石墨相氮化碳 金属铋 Z字型异质结 等离子共振效应 罗丹明B 可见光
下载PDF
过渡金属硫化物相关电催化剂的设计与应用研究 被引量:1
4
作者 苏慧 姜静 +4 位作者 宋少佳 安博涵 李宁 高旸钦 戈磊 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2023年第1期7-49,共43页
自从国际社会提出“碳达峰、碳中和”目标以来,人们越来越意识到节约资源、保护环境、开发新能源的必要性.氢能(H_(2))作为最具竞争力的清洁能源之一,引起了研究人员的广泛关注.电化学全解水被认为是一种利用风能和太阳能产生氢气的有... 自从国际社会提出“碳达峰、碳中和”目标以来,人们越来越意识到节约资源、保护环境、开发新能源的必要性.氢能(H_(2))作为最具竞争力的清洁能源之一,引起了研究人员的广泛关注.电化学全解水被认为是一种利用风能和太阳能产生氢气的有效技术,其主要由两个半反应组成:析氧反应(OER)和析氢反应(HER).然而,在实际工业化生产过程中阳极反应动力学OER慢,能量转换效率低,阴极反应稳定性差,导致经济效益不理想,因此,急需开发和探索耐久高效的电催化剂.过渡金属硫化物因具有独特的结构特征、丰富的活性位点和可调控的电子性质和组成,而被广泛用于电化学全解水制氢.本文综述了过渡金属硫化物的合成方法,一般包括:水热(溶剂热)法、电化学沉积法、液相剥离法、化学气相沉积法和球磨法,并概述了不同方法的基本概念、合成步骤以及优缺点.总结了近年用于电催化领域中典型单一硫化物(包括MoS_(2),WS_(2),Co3S_(4),Ni_(3)S_(2)等)材料的合成方法和机理,明确了S元素在整个电催化过程中的重要作用.针对单一硫化物稳定性差、活性位点少、电化学活性不高的缺点,详细总结了双金属、多金属以及单原子、双原子硫化物的催化机理和催化性能.当采用复合、引入缺陷、空缺和形态调节等手段修饰时,能够有效调控金属硫化物的电子结构,增加活性位点数量,优化反应中间体的吸附能,降低OER过程的能垒,从而使多金属硫化物具有优异的电化学性能.最后,通过一些典型的研究结果揭示了过渡金属硫化物在水分子分裂过程中的结构特性变化原理,特别是对于多金属硫化物,活性位点可以是金属阳离子,而其他金属的引入将在一定程度上改变活性中心附近的电子结构和配位环境,进而改善材料的催化性能.尽管过渡金属硫化物在电催化领域的应用研究取得了一系列进展,但仍存在诸多挑战,距实际应用仍有较大差距.需要综合考虑经济、高性能、稳定性和环境友好等因素进行过渡金属硫化物催化材料的设计、制备和性能调控,并为大规模应用提供基础.同时,深入探索电催化机理有利于设计高效电催化剂和推动电催化领域的持续发展.综上,本文为新型电催化材料的制备和电催化全解水机理的深入研究提供一定的参考. 展开更多
关键词 过渡金属硫化物 析氢反应 析氧反应 全解水 电催化
下载PDF
类金属WO_(2)/g-C_(3)N_(4)复合光催化剂的构造及其优异的光催化性能
5
作者 李宁 高雪云 +2 位作者 苏俊珲 高旸钦 戈磊 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2023年第4期161-170,共10页
随着化石燃料快速消耗和环境污染日益严峻,高效光催化产氢技术作为最有前景的绿色能源技术之一而备受关注.作为典型的2D纳米片,g-C_(3)N_(4)具有很多适合应用在光催化领域的特性,如可见光效应、大比表面积和环境友好等,但单一g-C_(3)N_... 随着化石燃料快速消耗和环境污染日益严峻,高效光催化产氢技术作为最有前景的绿色能源技术之一而备受关注.作为典型的2D纳米片,g-C_(3)N_(4)具有很多适合应用在光催化领域的特性,如可见光效应、大比表面积和环境友好等,但单一g-C_(3)N_(4)的载流子复合率高,光催化性能不佳.研究者尝试负载贵金属(如Pt,Ag,Au等),利用贵金属功函数较高,可以快速捕获g-C_(3)N_(4)表面的光生电子,从而有效抑制光生载流子的复合;但其成本较高,限制了该技术的产业化.目前类金属材料(MoO_(2),NbO_(2),WO_(2)等)不仅表现出类似贵金属的特性,且价格低廉,有望替代贵金属.因此,引入类金属助催化剂是实现高载流子浓度和宽光谱照射下强光子吸收的好方法.本文设计并制备了类金属WO_(2)/g-C_(3)N_(4)纳米复合物,其表现出了较好的光催化性能:在可见光照射2h,4 wt%WO_(2)/g-C_(3)N_(4)的光催化降解效率高达96%;同时,4 wt%WO_(2)/g-C_(3)N_(4)/Pt产氢效率高达2436.9μmolg^(-1)h^(-1),是未改性样品3 wt%Pt/g-C_(3)N_(4)的2.55倍和非贵金属样品WO_(2)/g-C_(3)N_(4)的6.18倍,且表现出很好的循环稳定性.紫外可见漫反射光谱和态密度计算结果表明,WO_(2)具有非常窄的带隙,可吸收200-800 nm的宽范围可见光.实验测试和理论计算结果表明,WO_(2)因带隙较窄而表现出类金属特性,即在WO_(2)/g-C_(3)N_(4)界面,WO_(2)快速捕获电子,从而抑制光生载流子的复合.类金属WO_(2)因具有较低的功函数而表现出比贵金属Pt低的捕获光生电子活性.综上,本文为合理设计助催化剂/半导体,实现高效的光催化性能提供了新视角. 展开更多
关键词 g-C_(3)N_(4) 类金属WO_(2) 光催化产氢性能 光催化降解 非贵金属光催化剂
下载PDF
光催化分解水制氢反应中助催化剂的作用及机理(英文) 被引量:10
6
作者 肖楠 李松松 +3 位作者 李旭力 戈磊 高旸钦 李宁 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第4期642-671,共30页
近年来,随着一次能源过度消耗所带来的能源和环境问题日益突出,开发廉价、可持续的清洁能源备受关注.光催化分解水制氢可利用太阳能普遍率高和几乎免费等特点制取燃烧热值高、燃烧产物无污染的氢气能源.自从1972年日本的Fujishima教授和... 近年来,随着一次能源过度消耗所带来的能源和环境问题日益突出,开发廉价、可持续的清洁能源备受关注.光催化分解水制氢可利用太阳能普遍率高和几乎免费等特点制取燃烧热值高、燃烧产物无污染的氢气能源.自从1972年日本的Fujishima教授和Honda教授首次发现TiO2单晶电极光催化分解水可以产生氢气以来,光催化制氢被认为是实现可持续制氢最有潜力的方法之一.有效地将太阳能转换为化学能的关键是设计高效的电荷分离和运输结构.然而,现有的大多数半导体光催化剂因缺少活性位点、光生载流子易复合等缺点而无法达到较高的转换效率.因此,如何提高半导体光催化产氢的转换效率是现阶段面对的重要问题.在众多解决方法中,助催化剂的引入可以为光催化制氢反应增加活性位点,促进光生载流子的有效分离,进而有效地提高半导体光催化产氢速率.本文总结了多种不同类型的助催化剂应用于光催化产氢研究的最新进展,详细讨论了助催化剂在增强光吸收、提供活性位点、增加催化剂稳定性和促进电荷分离等方面的作用,阐明了助催化剂在光催化分解水制氢中的反应机理,同时还提出了光催化制氢的未来研究和预测.本文将助催化剂分为以下几种类别进行讨论:(1)单一助催化剂,包括金属/合金、金属氧化物/氢氧化物、金属磷化物、金属硫化物、碳基材料等助催化剂材料;(2)双助催化剂;(3)Z-Scheme助催化剂;(4)MOFs助催化剂.近年来,助催化剂材料在光催化产氢中应用的发展趋势从当初价格昂贵的贵金属趋于价格相对低廉的非贵金属,从单一体系趋于更复杂的体系.虽然现阶段关于助催化剂与基底之间的匹配还需要进一步研究,但我们相信随着技术的发展,这些问题都可以迎刃而解.希望在不久的将来,可以精确设计和构建出具有高效光催化产氢活性的催化剂体系,开发出更多新的可再生清洁能源,从而缓解能源紧缺和环境恶化等棘手问题. 展开更多
关键词 助催化剂 光催化 析氢 电荷分离 分解水
下载PDF
双马来酰亚胺/碳纤维复合非金属油井管的性能
7
作者 张江江 郭玉洁 +2 位作者 李芳 吕毅男 孟晓宇 《工程塑料应用》 CAS CSCD 北大核心 2021年第12期118-122,共5页
针对双马来酰亚胺(BMI)/碳纤维(CF)复合非金属油井管进行热学性能测试及模拟油气田深井管道服役工况环境腐蚀试验,测试了120℃腐蚀前后BMI/CF复合非金属油井管的力学性能。结果表明,BMI/CF复合非金属油井管内纤维连续,BMI与CF结合紧密。... 针对双马来酰亚胺(BMI)/碳纤维(CF)复合非金属油井管进行热学性能测试及模拟油气田深井管道服役工况环境腐蚀试验,测试了120℃腐蚀前后BMI/CF复合非金属油井管的力学性能。结果表明,BMI/CF复合非金属油井管内纤维连续,BMI与CF结合紧密。BMI/CF复合非金属油井管具有良好的热稳定性与力学性能,其径向压缩强度为137.5 MPa,轴向压缩强度可达290 MPa,200℃高温下的拉伸强度可达825 MPa。120℃模拟油气田深井管道服役工况环境下腐蚀7 d后,BMI/CF复合非金属油井管的力学性能的变化较小,拉伸强度可达663 MPa以上,冲击强度为2.18×10^(3) J/cm^(2),与未腐蚀的试样相比,分别降低了6.1%和6.4%。证明BMI/CF非金属油井管具有优异的力学性能及耐温耐腐蚀性能,可适用于油气田深井管道服役工况环境。 展开更多
关键词 非金属油井管 双马来酰亚胺 碳纤维 力学性能 耐温耐腐蚀性能
下载PDF
基于分子自旋阀的自旋电子学 被引量:2
8
作者 谷现荣 郭立丹 +1 位作者 秦阳 孙向南 《科学通报》 EI CAS CSCD 北大核心 2018年第35期3689-3696,共8页
分子半导体材料因具有很长的自旋弛豫时间,被认为在自旋电子学领域存在巨大的应用潜力.在基于分子半导体材料开展的自旋电子学研究被首次报道后的十余年里,以分子自旋阀为载体的自旋电子学研究取得了巨大发展并引起了广泛关注.本文将围... 分子半导体材料因具有很长的自旋弛豫时间,被认为在自旋电子学领域存在巨大的应用潜力.在基于分子半导体材料开展的自旋电子学研究被首次报道后的十余年里,以分子自旋阀为载体的自旋电子学研究取得了巨大发展并引起了广泛关注.本文将围绕分子自旋阀中的自旋注入、界面效应和输运等关键研究方向,综述近年来该研究领域的重要研究成果,具体包括:分子自旋阀制备工艺改善、结构优化对自旋注入效率的提升,自旋界面效应对优化注入和调控信号等方面的最新进展;以及分子半导体中自旋输运距离优化和输运机制研究结果.最后,基于分子自旋阀中的注入、界面效应和输运的研究基础,展望分子自旋阀多功能化这一新兴研究方向的发展前景.以上进展对未来自旋电子学和分子电子学领域进一步交叉研究的开展具有借鉴价值. 展开更多
关键词 分子自旋阀 分子半导体材料 自旋注入 自旋界面效应 自旋输运
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部