The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.D...The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.Due to its complex pore and throat structure,pronounced heterogeneity,and tight reservoir characteristics,the techniques for conventional oil and gas exploration and production face challenges in comprehensive implementation,also indicating that as a vital parameter for evaluating the physical properties of a reservoir,permeability cannot be effectively estimated.This study selects 21 tight sandstone samples from the Q area within the shale oil formations of Ordos Basin.We systematically conduct the experiments to measure porosity,permeability,ultrasonic wave velocities,and resistivity at varying confining pressures.Results reveal that these measurements exhibit nonlinear changes in response to effective pressure.By using these experimental data and effective medium model,empirical relationships between P-and S-wave velocities,permeability and resistivity and effective pressure are established at logging and seismic scales.Furthermore,relationships between P-wave impedance and permeability,and resistivity and permeability are determined.A comparison between the predicted permeability and logging data demonstrates that the impedance–permeability relationship yields better results in contrast to those of resistivity–permeability relationship.These relationships are further applied to the seismic interpretation of shale oil reservoir in the target layer,enabling the permeability profile predictions based on inverse P-wave impedance.The predicted results are evaluated with actual production data,revealing a better agreement between predicted results and logging data and productivity.展开更多
Images created from measurements made by wireline microresistivity imaging tools have longitudinal gaps when the well circumference exceeds the total width of the pad-mounted electrode arrays.The gap size depends on t...Images created from measurements made by wireline microresistivity imaging tools have longitudinal gaps when the well circumference exceeds the total width of the pad-mounted electrode arrays.The gap size depends on the tool design and borehole size,and the null data in these gaps negatively aff ect the quantitative evaluation of reservoirs.Images with linear and texture features obtained from microresistivity image logs have distinct dual fabric features because of logging principles and various geological phenomena.Linear image features usually include phenomena such as fractures,bedding,and unconformities.Contrarily,texture-based image features usually indicate phenomena such as vugs and rock matrices.According to the characteristics of this fabric-based binary image structure and guided by the practice of geological interpretation,an adaptive inpainting method for the blank gaps in microresistivity image logs is proposed.For images with linear features,a sinusoidal tracking inpainting algorithm based on an evaluation of the validity and continuity of pixel sets is used.Contrarily,the most similar target transplantation algorithm is applied to texture-based images.The results obtained for measured electrical imaging data showed that the full borehole image obtained by the proposed method,whether it was a linear structural image refl ecting fracture and bedding or texture-based image refl ecting the matrix and pore of rock,had substantially good inpainting quality with enhanced visual connectivity.The proposed method was eff ective for inpainting electrical image logs with large gaps and high angle fractures with high heterogeneity.Moreover,ladder and block artifacts were rare,and the inpainting marks were not obvious.In addition,detailed full borehole images obtained by the proposed method will provide an essential basis for interpreting geological phenomena and reservoir parameters.展开更多
The coherence method is always used to describe the discontinuity and heterogeneity of seismic data. In traditional coherence methods, a linear correlation coefficient is always used to measure the relationship betwee...The coherence method is always used to describe the discontinuity and heterogeneity of seismic data. In traditional coherence methods, a linear correlation coefficient is always used to measure the relationship between two random variables (i.e., between two seismic traces). However, mathematically speaking, a linear correlation coefficient cannot be applied to describe nonlinear relationships between variables. In order to overcome this limitation of liner correlation coefficient. We proposed an improved concordance measurement algorithm based on Kendall's tau. That mainly concern the sensitivity of the liner correlation coefficient and concordance measurements on the waveform. Using two designed numerical models tests sensitivity of waveform similarity affected by these two factors. The analysis of both the numerical model results and real seismic data processing suggest that the proposed method, combining information divergence measurement, can not only precisely characterize the variations of waveform and the heterogeneity of an underground geological body, but also does so with high resolution. In addition, we verified its effectiveness by the actual application of real seismic data from the north of China.展开更多
Existing seismic prediction methods struggle to effectively discriminate between fluids in tight gas reservoirs,such as those in the Sulige gas field in the Ordos Basin,where porosity and permeability are extremely lo...Existing seismic prediction methods struggle to effectively discriminate between fluids in tight gas reservoirs,such as those in the Sulige gas field in the Ordos Basin,where porosity and permeability are extremely low and the relationship between gas and water is complicated.In this paper,we have proposed a comprehensive seismic fluid identification method that combines ray-path elastic impedance(REI)inversion with fluid substitution for tight reservoirs.This approach is grounded in geophysical theory,forward modeling,and real data applications.We used geophysics experiments in tight gas reservoirs to determine that Brie's model is better suited to calculate the elastic parameters of mixed fluids than the conventional Wood’s model.This yielded a more reasonable and accurate fluid substitution model for tight gas reservoirs.We developed a forward model and carried out inversion of REI.which reduced the non-uniqueness problem that has plagued elastic impedance inversion in the angle domain.Our well logging forward model in the ray-path domain with different fluid saturations based on a fluid substitution model proved that REI identifies fluids more accurately when the ray parameters are large.The distribution of gas saturation can be distinguished from the crossplot of REI(p=0.10)and porosity.The inverted ray-path elastic impedance profile was further used to predict the porosity and gas saturation profile.Our new method achieved good results in the application of 2D seismic data in the western Sulige gas field.展开更多
基金supports from the National Natural Science Foundation of China(42104110,41974123,42174161,and 12334019)the Natural Science Foundation of Jiangsu Province(BK20210379,BK20200021)+1 种基金the Postdoctoral Science Foundation of China(2022M720989)the Fundamental Research Funds for the Central Universities(B210201032).
文摘The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.Due to its complex pore and throat structure,pronounced heterogeneity,and tight reservoir characteristics,the techniques for conventional oil and gas exploration and production face challenges in comprehensive implementation,also indicating that as a vital parameter for evaluating the physical properties of a reservoir,permeability cannot be effectively estimated.This study selects 21 tight sandstone samples from the Q area within the shale oil formations of Ordos Basin.We systematically conduct the experiments to measure porosity,permeability,ultrasonic wave velocities,and resistivity at varying confining pressures.Results reveal that these measurements exhibit nonlinear changes in response to effective pressure.By using these experimental data and effective medium model,empirical relationships between P-and S-wave velocities,permeability and resistivity and effective pressure are established at logging and seismic scales.Furthermore,relationships between P-wave impedance and permeability,and resistivity and permeability are determined.A comparison between the predicted permeability and logging data demonstrates that the impedance–permeability relationship yields better results in contrast to those of resistivity–permeability relationship.These relationships are further applied to the seismic interpretation of shale oil reservoir in the target layer,enabling the permeability profile predictions based on inverse P-wave impedance.The predicted results are evaluated with actual production data,revealing a better agreement between predicted results and logging data and productivity.
基金This work was supported by Initial Scientifi c Research Fund for Doctor of Xinjiang University(No.620321016)Gansu Provincial Natural Science Foundation of China(No.17JR5RA313)Key Laboratory of Petroleum Resource Research of Chinese Academy of Science Foundation(No.KFJJ2016-02).
文摘Images created from measurements made by wireline microresistivity imaging tools have longitudinal gaps when the well circumference exceeds the total width of the pad-mounted electrode arrays.The gap size depends on the tool design and borehole size,and the null data in these gaps negatively aff ect the quantitative evaluation of reservoirs.Images with linear and texture features obtained from microresistivity image logs have distinct dual fabric features because of logging principles and various geological phenomena.Linear image features usually include phenomena such as fractures,bedding,and unconformities.Contrarily,texture-based image features usually indicate phenomena such as vugs and rock matrices.According to the characteristics of this fabric-based binary image structure and guided by the practice of geological interpretation,an adaptive inpainting method for the blank gaps in microresistivity image logs is proposed.For images with linear features,a sinusoidal tracking inpainting algorithm based on an evaluation of the validity and continuity of pixel sets is used.Contrarily,the most similar target transplantation algorithm is applied to texture-based images.The results obtained for measured electrical imaging data showed that the full borehole image obtained by the proposed method,whether it was a linear structural image refl ecting fracture and bedding or texture-based image refl ecting the matrix and pore of rock,had substantially good inpainting quality with enhanced visual connectivity.The proposed method was eff ective for inpainting electrical image logs with large gaps and high angle fractures with high heterogeneity.Moreover,ladder and block artifacts were rare,and the inpainting marks were not obvious.In addition,detailed full borehole images obtained by the proposed method will provide an essential basis for interpreting geological phenomena and reservoir parameters.
基金supported by the Major Programs of National Natural Science Foundation of China(No.41390454)the Major Research Plan of the National Natural Science Foundation of China(No.91330204)
文摘The coherence method is always used to describe the discontinuity and heterogeneity of seismic data. In traditional coherence methods, a linear correlation coefficient is always used to measure the relationship between two random variables (i.e., between two seismic traces). However, mathematically speaking, a linear correlation coefficient cannot be applied to describe nonlinear relationships between variables. In order to overcome this limitation of liner correlation coefficient. We proposed an improved concordance measurement algorithm based on Kendall's tau. That mainly concern the sensitivity of the liner correlation coefficient and concordance measurements on the waveform. Using two designed numerical models tests sensitivity of waveform similarity affected by these two factors. The analysis of both the numerical model results and real seismic data processing suggest that the proposed method, combining information divergence measurement, can not only precisely characterize the variations of waveform and the heterogeneity of an underground geological body, but also does so with high resolution. In addition, we verified its effectiveness by the actual application of real seismic data from the north of China.
基金supported by the National Science and Technology Major Project(No.2016ZX05050 and 2017ZX05069)CNPC Major Technology Special Project(No.2016E-0503)
文摘Existing seismic prediction methods struggle to effectively discriminate between fluids in tight gas reservoirs,such as those in the Sulige gas field in the Ordos Basin,where porosity and permeability are extremely low and the relationship between gas and water is complicated.In this paper,we have proposed a comprehensive seismic fluid identification method that combines ray-path elastic impedance(REI)inversion with fluid substitution for tight reservoirs.This approach is grounded in geophysical theory,forward modeling,and real data applications.We used geophysics experiments in tight gas reservoirs to determine that Brie's model is better suited to calculate the elastic parameters of mixed fluids than the conventional Wood’s model.This yielded a more reasonable and accurate fluid substitution model for tight gas reservoirs.We developed a forward model and carried out inversion of REI.which reduced the non-uniqueness problem that has plagued elastic impedance inversion in the angle domain.Our well logging forward model in the ray-path domain with different fluid saturations based on a fluid substitution model proved that REI identifies fluids more accurately when the ray parameters are large.The distribution of gas saturation can be distinguished from the crossplot of REI(p=0.10)and porosity.The inverted ray-path elastic impedance profile was further used to predict the porosity and gas saturation profile.Our new method achieved good results in the application of 2D seismic data in the western Sulige gas field.