近年来,基于BiVO_(4)光阳极的光电催化分解水技术引起人们的关注.我们通过水热-氨化法制备出Ni_(3)N纳米颗粒,首次将其作为助催化剂修饰到BiVO_(4)光阳极上光电催化分解水.实验表明, Ni_(3)N纳米颗粒成功负载到BiVO_(4)光阳极表面并可...近年来,基于BiVO_(4)光阳极的光电催化分解水技术引起人们的关注.我们通过水热-氨化法制备出Ni_(3)N纳米颗粒,首次将其作为助催化剂修饰到BiVO_(4)光阳极上光电催化分解水.实验表明, Ni_(3)N纳米颗粒成功负载到BiVO_(4)光阳极表面并可有效抑制表面电荷复合以及提高光电催化分解水性能.在1.23 V v. RHE处光电流密度可达3.23mA/cm^(2).此外, Ni_(3)N/BiVO_(4)光阳极的最大值ABPE值达0.88%,并呈现出良好的稳定性.展开更多
文摘近年来,基于BiVO_(4)光阳极的光电催化分解水技术引起人们的关注.我们通过水热-氨化法制备出Ni_(3)N纳米颗粒,首次将其作为助催化剂修饰到BiVO_(4)光阳极上光电催化分解水.实验表明, Ni_(3)N纳米颗粒成功负载到BiVO_(4)光阳极表面并可有效抑制表面电荷复合以及提高光电催化分解水性能.在1.23 V v. RHE处光电流密度可达3.23mA/cm^(2).此外, Ni_(3)N/BiVO_(4)光阳极的最大值ABPE值达0.88%,并呈现出良好的稳定性.