期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向点云识别网络的显著图生成
1
作者 梁奥 张浩 花海洋 《光学精密工程》 EI CAS CSCD 北大核心 2023年第8期1188-1201,共14页
点云结构上的特殊性质,导致解释其深度模型学习特征的结果存在困难。提出了一种获得点云目标识别模型显著图的方法,首先在点云空间中随机释放若干自由因子并输入到模型中,然后根据设计的贡献度评价指标,基于梯度下降使骨干网络输出的池... 点云结构上的特殊性质,导致解释其深度模型学习特征的结果存在困难。提出了一种获得点云目标识别模型显著图的方法,首先在点云空间中随机释放若干自由因子并输入到模型中,然后根据设计的贡献度评价指标,基于梯度下降使骨干网络输出的池化特征尽可能偏离目标点云识别过程中输出的池化特征并更新因子位置。迭代后的因子无法参与识别过程,其对模型的预测“零贡献”,将目标点云中的点移动到这些因子的位置后对识别结果的影响与丢弃该点完全相同。点的移动过程可微,最后可根据梯度信息获得显著图。本文的方法在ModelNet40数据集上生成PointNet模型的显著图,相较于用点云中心生成显著图的方法,理论依据更强且适用的数据集更多。移动点至“零贡献”因子位置后对模型的影响较移动点至点云中心与丢弃点更相似。按本文的方法丢弃点使模型精度下降得更快,在仅丢弃100个点的情况下,模型的OA(overall accuracy)由90.4%下降至81.1%。同时经DGCNN和PointMLP评估,该显著性结果具有良好的通用性。该方法生成的显著性分数精度更高,且由模型驱动不含任何假设,适用于绝大多数点云识别模型和数据集,其显著性分析结果对目标识别网络的搭建与数据增强具有指导意义。 展开更多
关键词 点云 显著图 目标识别 深度学习 可解释性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部