全球变暖的问题正变得日益严峻,碳减排碳中和已成为国际社会的共识和努力目标。作为CO_(2)减排的重要方式之一,二氧化碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)近年来备受关注并且发展迅猛。CO_(2)海洋封存作...全球变暖的问题正变得日益严峻,碳减排碳中和已成为国际社会的共识和努力目标。作为CO_(2)减排的重要方式之一,二氧化碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)近年来备受关注并且发展迅猛。CO_(2)海洋封存作为其中一种最具潜力的减排方式,了解其发展现状对进一步研究CO_(2)封存具有重要的参考价值。本文介绍了CO_(2)海洋封存的方法和封存机理,总结了该技术在国内外研究进展。此外,文章还概述了我国在CO_(2)海洋封存上的巨大潜力和库源匹配上的优势,以及海洋封存对环境可能造成的影响。最后,指出推进CO_(2)海洋封存技术的研究并开发相应的能力,将有助于加速推进碳减排进程、尽快实现碳中和目标。展开更多
Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by...Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction.展开更多
CO2 is not only the most important greenhouse gas but also an important resource of elemental carbon and oxygen.From the perspective of resource and energy strategy,the conversion of CO2 to chemicals driven by renewab...CO2 is not only the most important greenhouse gas but also an important resource of elemental carbon and oxygen.From the perspective of resource and energy strategy,the conversion of CO2 to chemicals driven by renewable energy is of significance,since it can not only reduce carbon emission by the utilization of CO2 as feedstock but also store low-grade renewable energy as high energy density chemical energy.Although studies on photoelectrocatalytic reduction of CO2 using renewable energy are increasing,artificial bioconversion of CO2 as an important novel pathway to synthesize chemicals has attracted more and more attention.By simulating the natural photosynthesis process of plants and microorganisms,the artificial bioconversion of CO2 can efficiently synthesize chemicals via a designed and constructed artificial photosynthesis system.This review focuses on the recent advancements in artificial bioreduction of CO2,including the key techniques,and artificial biosynthesis of compounds with different carbon numbers.On the basis of the aforementioned discussions,we present the prospects for further development of artificial bioconversion of CO2 to chemicals.展开更多
Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the tw...Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the two components.We carried out first‐principles calculations at the PBE+U level to investigate the Pd‐doping effect on CH4reactivity over the Co3O4catalyst.Because of the structural complexity of the Pd‐doped Co3O4catalyst,we built Pd‐doped catalyst models using Co3O4(001)slabs with two different terminations and examined CH4reactivity over the possible Pd?O active sites.A low energy barrier of0.68eV was predicted for CH4dissociation over the more reactive Pd‐doped Co3O4(001)surface,which was much lower than the0.98and0.89eV that was predicted previously over the more reactive pure Co3O4(001)and(011)surfaces,respectively.Using a simple model,we predicted CH4reaction rates over the pure Co3O4(001)and(011)surfaces,and Co3O4(001)surfaces with different amounts of Pd dopant.Our theoretical results agree well with the available experimental data,which suggests a strong synergy between the Pd dopant and the Co3O4catalyst,and leads to a significant increase in CH4reaction rate.展开更多
Co2C‐based catalysts with SiO2,γ‐Al2O3,and carbon nanotubes(CNTs)as support materials were prepared and evaluated for the Fischer‐Tropsch to olefin(FTO)reaction.The combination of catalytic performance and structu...Co2C‐based catalysts with SiO2,γ‐Al2O3,and carbon nanotubes(CNTs)as support materials were prepared and evaluated for the Fischer‐Tropsch to olefin(FTO)reaction.The combination of catalytic performance and structure characterization indicates that the cobalt‐support interaction has a great influence on the Co2C morphology and catalytic performance.The CNT support facilitates the formation of a CoMn composite oxide during calcination,and Co2C nanoprisms were observed in the spent catalysts,resulting in a product distribution that greatly deviates from the classical Anderson‐Schulz‐Flory(ASF)distribution,where only 2.4 C%methane was generated.The Co3O4 phase for SiO2‐andγ‐Al2O3‐supported catalysts was observed in the calcined sample.After reduction,CoO,MnO,and low‐valence CoMn composite oxide were generated in theγ‐Al2O3‐supported sample,and both Co2C nanospheres and nanoprisms were identified in the corresponding spent catalyst.However,only separated phases of CoO and MnO were found in the reduced sample supported by SiO2,and Co2C nanospheres were detected in the spent catalyst without the evidence of any Co2C nanoprisms.The Co2C nanospheres led to a relatively high methane selectivity of 5.8 C%and 12.0 C%of theγ‐Al2O3‐and SiO2‐supported catalysts,respectively.These results suggest that a relatively weak cobalt‐support interaction is necessary for the formation of the CoMn composite oxide during calcination,which benefits the formation of Co2C nanoprisms with promising catalytic performance for the sustainable production of olefins via syngas.展开更多
文摘全球变暖的问题正变得日益严峻,碳减排碳中和已成为国际社会的共识和努力目标。作为CO_(2)减排的重要方式之一,二氧化碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)近年来备受关注并且发展迅猛。CO_(2)海洋封存作为其中一种最具潜力的减排方式,了解其发展现状对进一步研究CO_(2)封存具有重要的参考价值。本文介绍了CO_(2)海洋封存的方法和封存机理,总结了该技术在国内外研究进展。此外,文章还概述了我国在CO_(2)海洋封存上的巨大潜力和库源匹配上的优势,以及海洋封存对环境可能造成的影响。最后,指出推进CO_(2)海洋封存技术的研究并开发相应的能力,将有助于加速推进碳减排进程、尽快实现碳中和目标。
基金The project was supported by Natural Science Foundation of China(22072177)Natural Science Foundation of Shanghai(21ZR1471700)Shanghai Youth Science and Technology Talents Sailing Program(21YF1453600)。
基金The project was supported by the National Key R&D Program of China(2021YFF0500702)Natural Science Foundation of Shanghai(22JC1404200)+3 种基金Program of Shanghai Academic/Technology Research Leader(20XD1404000)Natural Science Foundation of China(U22B20136,22293023)Science and Technology Major Project of Inner Mongolia(2021ZD0042)the Youth Innovation Promotion Association of CAS。
文摘Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction.
基金supported by Natural Science Foundation of China(U22B20136,91945301,22202230)National Key R&D Program of China(2021YFF0500702)+3 种基金Natural Science Foundation of Shanghai(22JC1404200)Program of Shanghai Academic/Technology Research Leader(20XD1404000)the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of Chinese Academy of Sciences(XDA21020600)。
基金supported by the National Natural Science Foundation of China (91745114, 21802160)the National Key R&D Program of China (2016YFA0202800)+2 种基金Shanghai Sailing Program (18YF1425700)Shanghai Advanced Research Institute Innovation Research Program (Y756812ZZ1(172002),Y756803ZZ1(171003))the support from the Hundred Talents Program of the Chinese Academy of Sciences~~
文摘CO2 is not only the most important greenhouse gas but also an important resource of elemental carbon and oxygen.From the perspective of resource and energy strategy,the conversion of CO2 to chemicals driven by renewable energy is of significance,since it can not only reduce carbon emission by the utilization of CO2 as feedstock but also store low-grade renewable energy as high energy density chemical energy.Although studies on photoelectrocatalytic reduction of CO2 using renewable energy are increasing,artificial bioconversion of CO2 as an important novel pathway to synthesize chemicals has attracted more and more attention.By simulating the natural photosynthesis process of plants and microorganisms,the artificial bioconversion of CO2 can efficiently synthesize chemicals via a designed and constructed artificial photosynthesis system.This review focuses on the recent advancements in artificial bioreduction of CO2,including the key techniques,and artificial biosynthesis of compounds with different carbon numbers.On the basis of the aforementioned discussions,we present the prospects for further development of artificial bioconversion of CO2 to chemicals.
基金supported by the National Natural Science Foundation of China(21473233,21403277)the Energy Technologies Institute LLP,UK~~
文摘Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the two components.We carried out first‐principles calculations at the PBE+U level to investigate the Pd‐doping effect on CH4reactivity over the Co3O4catalyst.Because of the structural complexity of the Pd‐doped Co3O4catalyst,we built Pd‐doped catalyst models using Co3O4(001)slabs with two different terminations and examined CH4reactivity over the possible Pd?O active sites.A low energy barrier of0.68eV was predicted for CH4dissociation over the more reactive Pd‐doped Co3O4(001)surface,which was much lower than the0.98and0.89eV that was predicted previously over the more reactive pure Co3O4(001)and(011)surfaces,respectively.Using a simple model,we predicted CH4reaction rates over the pure Co3O4(001)and(011)surfaces,and Co3O4(001)surfaces with different amounts of Pd dopant.Our theoretical results agree well with the available experimental data,which suggests a strong synergy between the Pd dopant and the Co3O4catalyst,and leads to a significant increase in CH4reaction rate.
文摘Co2C‐based catalysts with SiO2,γ‐Al2O3,and carbon nanotubes(CNTs)as support materials were prepared and evaluated for the Fischer‐Tropsch to olefin(FTO)reaction.The combination of catalytic performance and structure characterization indicates that the cobalt‐support interaction has a great influence on the Co2C morphology and catalytic performance.The CNT support facilitates the formation of a CoMn composite oxide during calcination,and Co2C nanoprisms were observed in the spent catalysts,resulting in a product distribution that greatly deviates from the classical Anderson‐Schulz‐Flory(ASF)distribution,where only 2.4 C%methane was generated.The Co3O4 phase for SiO2‐andγ‐Al2O3‐supported catalysts was observed in the calcined sample.After reduction,CoO,MnO,and low‐valence CoMn composite oxide were generated in theγ‐Al2O3‐supported sample,and both Co2C nanospheres and nanoprisms were identified in the corresponding spent catalyst.However,only separated phases of CoO and MnO were found in the reduced sample supported by SiO2,and Co2C nanospheres were detected in the spent catalyst without the evidence of any Co2C nanoprisms.The Co2C nanospheres led to a relatively high methane selectivity of 5.8 C%and 12.0 C%of theγ‐Al2O3‐and SiO2‐supported catalysts,respectively.These results suggest that a relatively weak cobalt‐support interaction is necessary for the formation of the CoMn composite oxide during calcination,which benefits the formation of Co2C nanoprisms with promising catalytic performance for the sustainable production of olefins via syngas.