随着大型地面和空间观测设备的建设以及大型巡天项目的开展,天文数据以TB字节、PB字节,甚至EB字节计量,天文学进入了"大数据"时代。面对数据海洋,如何有效地存储和管理这些大数据是摆在天文学家面前的核心问题。数据存储和管...随着大型地面和空间观测设备的建设以及大型巡天项目的开展,天文数据以TB字节、PB字节,甚至EB字节计量,天文学进入了"大数据"时代。面对数据海洋,如何有效地存储和管理这些大数据是摆在天文学家面前的核心问题。数据存储和管理不仅仅是天文数据中心的任务,天文学家也需要有效地管理自己的科研数据。能够将海量的数据自动地存入数据库中是管理数据的基本前提,而高效的数据索引则是管理数据的核心要素,为此设计开发了天文大数据管理工具Auto DB,使用虚拟终端监视实现海量数据的自动入库,对数据自动创建全新的天空分区索引Q3C(Quad Tree Cube),对天文数据进行二维空间索引以便于高效的管理。天文大数据管理工具的改进和完善对天文学家后续研究中的数据融合、数据分析、数据挖掘提供了根本的保障,尤其对从事大数据的天文学家,拥有自动化的数据库管理工具,可以集中精力致力于科学研究。展开更多
光纤的焦比退化(focal ratio degradation)是光纤光谱效率损失的重要原因之一。光纤在安装和每次定位过程中,光纤的转动和扭曲会引起光纤焦比退化发生变化,从而改变光纤的传输效率,每根光纤由此造成的传输效率变化都会存在差异。而这样...光纤的焦比退化(focal ratio degradation)是光纤光谱效率损失的重要原因之一。光纤在安装和每次定位过程中,光纤的转动和扭曲会引起光纤焦比退化发生变化,从而改变光纤的传输效率,每根光纤由此造成的传输效率变化都会存在差异。而这样的效率差异无法用通常天文观测中使用的晨昏天光平场或者圆顶平场改正。减天光是光纤光谱数据处理中决定光谱质量的重要环节。减天光处理要求对不同光纤的传输效率进行归一化处理,以扣除不同光纤之间传输效率差异导致的天光背景测量的误差。对于与天光背景亮度接近乃至更暗的观测目标而言,光纤传输效率的改正精度决定了减天光的精度。测试了LAMOST望远镜光纤转动对光纤传输效率的影响情况。在检查了光谱中天光发射线强度与光纤传输效率的关系,和验证了光纤效率变化与波长变化相对独立的基础上,提出并且证实了通过测量各光纤中天光发射线强度作为光纤相对效率变化量来改正光纤效率差异的方法是可行的。这种方法已经被应用到LAMOST二维光谱处理当中。展开更多
文摘随着大型地面和空间观测设备的建设以及大型巡天项目的开展,天文数据以TB字节、PB字节,甚至EB字节计量,天文学进入了"大数据"时代。面对数据海洋,如何有效地存储和管理这些大数据是摆在天文学家面前的核心问题。数据存储和管理不仅仅是天文数据中心的任务,天文学家也需要有效地管理自己的科研数据。能够将海量的数据自动地存入数据库中是管理数据的基本前提,而高效的数据索引则是管理数据的核心要素,为此设计开发了天文大数据管理工具Auto DB,使用虚拟终端监视实现海量数据的自动入库,对数据自动创建全新的天空分区索引Q3C(Quad Tree Cube),对天文数据进行二维空间索引以便于高效的管理。天文大数据管理工具的改进和完善对天文学家后续研究中的数据融合、数据分析、数据挖掘提供了根本的保障,尤其对从事大数据的天文学家,拥有自动化的数据库管理工具,可以集中精力致力于科学研究。
文摘光纤的焦比退化(focal ratio degradation)是光纤光谱效率损失的重要原因之一。光纤在安装和每次定位过程中,光纤的转动和扭曲会引起光纤焦比退化发生变化,从而改变光纤的传输效率,每根光纤由此造成的传输效率变化都会存在差异。而这样的效率差异无法用通常天文观测中使用的晨昏天光平场或者圆顶平场改正。减天光是光纤光谱数据处理中决定光谱质量的重要环节。减天光处理要求对不同光纤的传输效率进行归一化处理,以扣除不同光纤之间传输效率差异导致的天光背景测量的误差。对于与天光背景亮度接近乃至更暗的观测目标而言,光纤传输效率的改正精度决定了减天光的精度。测试了LAMOST望远镜光纤转动对光纤传输效率的影响情况。在检查了光谱中天光发射线强度与光纤传输效率的关系,和验证了光纤效率变化与波长变化相对独立的基础上,提出并且证实了通过测量各光纤中天光发射线强度作为光纤相对效率变化量来改正光纤效率差异的方法是可行的。这种方法已经被应用到LAMOST二维光谱处理当中。