Vibrational and structural dynamics of two transition metal carbonyl complexes, Mn(CO)5Br and Re(CO)5Br were examined in DMSO, using ultrafast infrared pump-probe spectroscopy, steady-state linear infrared spectro...Vibrational and structural dynamics of two transition metal carbonyl complexes, Mn(CO)5Br and Re(CO)5Br were examined in DMSO, using ultrafast infrared pump-probe spectroscopy, steady-state linear infrared spectroscopy and quantum chemistry computations. Two car- bonyl stretching vibrational modes (a low-frequency A1 mode and two high-frequency degenerate E modes) were used as vibrational probes. Central metal effect on the CO bond order and force constant was responsible for a larger E-A1 frequency separation and a generally more red-shifted E and A1 peaks in the Re complex than in the Mn complex. A generally broader spectral width for the A1 mode than the E mode is believed to be partially due to vibrational lifetime effect. Vibrational mode-dependent diagonal anharmonicity was observed in transient infrared spectra, with a generally smaller anharmonicity found for the E mode in both the Mn and Re complexes.展开更多
基金This work was supported by the Hundred Talent Fund of the Chinese Academy of Sciences, and also supported by the National Natural Science Foundation of China (No.21473212, No.20727001 and No.21573243). The author thanks P. Yu and J. Zhao for their technical assistances.
文摘Vibrational and structural dynamics of two transition metal carbonyl complexes, Mn(CO)5Br and Re(CO)5Br were examined in DMSO, using ultrafast infrared pump-probe spectroscopy, steady-state linear infrared spectroscopy and quantum chemistry computations. Two car- bonyl stretching vibrational modes (a low-frequency A1 mode and two high-frequency degenerate E modes) were used as vibrational probes. Central metal effect on the CO bond order and force constant was responsible for a larger E-A1 frequency separation and a generally more red-shifted E and A1 peaks in the Re complex than in the Mn complex. A generally broader spectral width for the A1 mode than the E mode is believed to be partially due to vibrational lifetime effect. Vibrational mode-dependent diagonal anharmonicity was observed in transient infrared spectra, with a generally smaller anharmonicity found for the E mode in both the Mn and Re complexes.