使用Microwave Office软件,仿真分析MUSER-I(0.4-2 GHz)和MUSER-II(2-15 GHz)3 d B定向耦合器.电桥采用多节耦合器实现,且每节耦合器的长度为中心频率波长的1/4,对电桥进行分析并制作实物.实测结果表明,MUSER-I的3 d B定向耦合器的...使用Microwave Office软件,仿真分析MUSER-I(0.4-2 GHz)和MUSER-II(2-15 GHz)3 d B定向耦合器.电桥采用多节耦合器实现,且每节耦合器的长度为中心频率波长的1/4,对电桥进行分析并制作实物.实测结果表明,MUSER-I的3 d B定向耦合器的输出幅度在(-3±0.2)d B,输出端口相位差在91.9°-89°之间;MUSER-II的3 d B定向耦合器的电压驻波比在全频带范围内小于1.31,输出端口相位差在96.05°-85°之间.通过日像仪系统接收太阳左旋和右旋圆偏振射电信号,并计算信号的圆偏振度,得到观测圆偏振度与太阳信号本身圆偏振度之间的误差和太阳信号本身偏振度的关系.当太阳信号本身极化度为10%时,误差最大为9.4%.展开更多
基金supported by Shanghai Jiao Tong University 2030 Initiative,Science and Technology Commission of Shanghai Municipality project (No.23JC1410200)Zhangjiang National Innovation Demonstration Zone project (No.ZJ2023-ZD-003)+7 种基金supported by the China-Chile Joint Research Fund under project CCJRF 2205, by FONDECYT grant 1201371the ANID BASAL project FB210003.YZC is supported by the National Natural Science Foundation of China (NSFC, Grant No.12303054)the Yunnan Fundamental Research Projects (Grant No.202401AU070063)the International Centre of Supernovae,Yunnan Key Laboratory (No.202302AN360001)supported by the NSFC (Grant No.12150009)supported by the NSFC through grants 12173029 and 12233013supported by the NSFC (Grant No.12120101003 and 12233008)supported by the NSFC (Grant No.12233003)
文摘使用Microwave Office软件,仿真分析MUSER-I(0.4-2 GHz)和MUSER-II(2-15 GHz)3 d B定向耦合器.电桥采用多节耦合器实现,且每节耦合器的长度为中心频率波长的1/4,对电桥进行分析并制作实物.实测结果表明,MUSER-I的3 d B定向耦合器的输出幅度在(-3±0.2)d B,输出端口相位差在91.9°-89°之间;MUSER-II的3 d B定向耦合器的电压驻波比在全频带范围内小于1.31,输出端口相位差在96.05°-85°之间.通过日像仪系统接收太阳左旋和右旋圆偏振射电信号,并计算信号的圆偏振度,得到观测圆偏振度与太阳信号本身圆偏振度之间的误差和太阳信号本身偏振度的关系.当太阳信号本身极化度为10%时,误差最大为9.4%.