期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
牧草种类与耕作时间对拉萨牧草种植地土壤不同组分有机碳的影响 被引量:3
1
作者 蒋婧 王沫竹 +2 位作者 宋明华 石培礼 宗宁 《生态学报》 CAS CSCD 北大核心 2015年第2期424-433,共10页
以中国科学院拉萨高原生态试验站附近天然灌丛草原与站内的牧草种植地为研究对象,分析牧草种类与耕作时间对牧草种植地土壤有机碳的影响。种植地的5种牧草种类为:耕作10a的鸭茅(Dactylis glomerata L.)、耕作4a与10a的垂穗披碱草(Elymus... 以中国科学院拉萨高原生态试验站附近天然灌丛草原与站内的牧草种植地为研究对象,分析牧草种类与耕作时间对牧草种植地土壤有机碳的影响。种植地的5种牧草种类为:耕作10a的鸭茅(Dactylis glomerata L.)、耕作4a与10a的垂穗披碱草(Elymus nutans Griseb.)、耕作3a与10a的苜蓿(Medicago sativa Linn.),同时以该区域原生植被天然灌丛草原生长地作为对照。结果表明:与天然灌丛土壤全土有机碳(Total Organic Carbon,TOC)含量相比,耕作10a的鸭茅增加了土层0—5 cm与10—30 cm TOC含量、耕作10a的苜蓿与垂穗披碱草分别显著增加与降低了土层0—5 cm TOC含量。主要因为耕作不同牧草使种植地土壤不同组分有机碳含量发生变化,耕作10a的鸭茅和苜蓿分别使土层0—5 cm与10—30 cm、土层0—5 cm与10—20 cm的砂粒级(50—2000μm)颗粒有机碳(POC)含量降低,粉粒与黏粒级(<50μm)矿物结合态有机碳(MOC)含量升高;耕作10a的垂穗披碱草则使土壤表层0—5 cm砂粒级POC含量显著降低,MOC无显著变化。与耕作4a的垂穗披碱草相比,耕作10a显著降低了土层10—20 cm TOC含量,主要体现在粗砂粒(250—2000μm)POC含量与粉粒(2—50μm)MOC含量的降低;与耕作3a的苜蓿相比,耕作10a的苜蓿显著降低了土层5—30 cm TOC含量,主要因为各土层砂粒级POC含量、粉粒与细黏粒MOC含量均有所降低。说明短期耕作更有利于牧草种植地土壤有机碳库的累积。 展开更多
关键词 牧草种类 耕作时间 土壤有机碳 种植地土壤 灌丛土壤
下载PDF
Alpine Grassland Aboveground Biomass and Theoretical Livestock Carrying Capacity on the Tibetan Plateau 被引量:6
2
作者 ZHANG Xianzhou LI Meng +2 位作者 WU Jianshuang HE Yongtao NIU Ben 《Journal of Resources and Ecology》 CSCD 2022年第1期129-141,共13页
The accurate simulation and prediction of grassland aboveground biomass (AGB) and theoretical livestock carrying capacity are key steps for maintaining ecosystem balance and sustainable grassland management.The AGB in... The accurate simulation and prediction of grassland aboveground biomass (AGB) and theoretical livestock carrying capacity are key steps for maintaining ecosystem balance and sustainable grassland management.The AGB in fenced grassland is not affected by grazing and its variability is only driven by climate change,which can be regarded as the grassland potential AGB (AGB_(p)).In this study,we compiled the data for 345 AGB field observations in fenced grasslands and their corresponding climate data,soil data,and topographical data on the Qinghai-Tibetan Plateau (TP).We further simulated and predicted grassland AGB_(p)and theoretical livestock carrying capacity under the climate conditions of the past (2000-2018) and future two decades (2021-2040) based on a random forest (RF) algorithm.The results showed that simulated AGB_(p)matched well with observed values in the field (R^(2)=0.76,P<0.001) in the past two decades.The average grassland AGB_(p)on the Tibetan Plateau was 102.4g m^(-2),and the inter-annual changes in AGB_(p)during this period showed a non-significant increasing trend.AGB_(p)fluctuation was positively correlated with growing season precipitation (R^(2)=0.57,P<0.001),and negatively correlated with the growing season diurnal temperature range (R^(2)=0.51,P<0.001).The average theoretical livestock carrying capacity was 0.94 standardized sheep units (SSU) ha^(-1)on the TP,in which about 54.1%of the areas showed an increasing trend during the past two decades.Compared with the past two decades,the theoretical livestock carrying capacity showed a decreasing trend in the future,which was mainly distributed in the central and northern TP.This study suggested that targeted planning and management should be carried out to alleviate the forage-livestock contradiction in grazing systems on the Tibetan Plateau. 展开更多
关键词 alpine grassland aboveground biomass carrying capacity climate change random forest Tibetan Plateau
原文传递
Comparison of Methods for Evaluating the Forage-livestock Balance of Alpine Grasslands on the Northern Tibetan Plateau 被引量:5
3
作者 CAO Yanan WU Jianshuang +2 位作者 ZHANG Xianzhou NIU Ben HE Yongtao 《Journal of Resources and Ecology》 CSCD 2020年第3期272-282,共11页
Livestock grazing is one of primary way to use grasslands throughout the world, and the forage-livestock balance of grasslands is a core issue determining animal husbandry sustainability. However, there are few method... Livestock grazing is one of primary way to use grasslands throughout the world, and the forage-livestock balance of grasslands is a core issue determining animal husbandry sustainability. However, there are few methods for assessing the forage-livestock balance and none of those consider the dynamics of external abiotic factors that influence forage yields. In this study, we combine long-term field observations with remote sensing data and meteorological records of temperature and precipitation to quantify the impacts of climate change and human activities on the forage-livestock balance of alpine grasslands on the northern Tibetan Plateau for the years 2000 to 2016. We developed two methods: one is statical method based on equilibrium theory and the other is dynamic method based on non-equilibrium theory. We also examined the uncertainties and shortcomings of using these two methods as a basis for formulating policies for sustainable grassland management. Our results from the statical method showed severe overgrazing in the grasslands of all counties observed except Nyima(including Shuanghu) for the entire period from 2000 to 2016. In contrast, the results from the dynamic method showed overgrazing in only eight years of the study period 2000–2016, while in the other nine years alpine grasslands throughout the northern Tibetan Plateau were less grazed and had forage surpluses. Additionally, the dynamic method found that the alpine grasslands of counties in the northeastern and southwestern areas of the northern Tibetan Plateau were overgrazed, and that alpine grasslands in the central area of the plateau were less grazed with forage surpluses. The latter finding is consistent with field surveys. Therefore, we suggest that the dynamic method is more appropriate for assessment of forage-livestock management efforts in alpine grasslands on the northern Tibetan Plateau. However, the statical method is still recommended for assessments of alpine grasslands profoundly disturbed by irrational human activities. 展开更多
关键词 aboveground biomass alpine grasslands carrying capacity forage-livestock balance Northern Tibetan Plateau
原文传递
Variations in the Drought Severity Index in Response to Climate Change on the Tibetan Plateau 被引量:2
4
作者 WANG Xiangtao ZHANG Xianzhou +1 位作者 WANG Junhao NIU Ben 《Journal of Resources and Ecology》 CSCD 2020年第3期304-314,共11页
Quantifying the relationship between the drought severity index and climate factors is crucial for predicting drought risk in situations characterized by climate change. However, variations in drought risk are not rea... Quantifying the relationship between the drought severity index and climate factors is crucial for predicting drought risk in situations characterized by climate change. However, variations in drought risk are not readily discernible under conditions of climate change, and this is particularly the case on the Tibetan Plateau. This study examines the correlations between the annual drought severity index(DSI) and 14 climate factors(including temperature, precipitation, humidity, wind speed, and hours of sunshine factors), on the Tibetan Plateau from 2000 to 2011. Spatial average DSI increased with precipitation and minimum relative humidity, while it decreased as the hours of sunshine increased. The correlation between DSI and climate factors varied with vegetation types. In alpine meadows, the correlation of the spatial DSI average with the percentage of sunshine and hours of sunshine(P<0.001) was higher compared to that in alpine steppes(P<0.05). Similarly, average vapor pressure and minimum relative humidity had significant positive effects on spatial DSI in alpine meadows, but had insignificant effects in alpine steppes. The magnitude of DSI change correlated negatively with temperature, precipitation, and vapor pressure, and positively with wind speed and sunshine. This demonstrates that the correlation between drought and climate change on the Tibetan Plateau is dependent on the type of ecosystem. 展开更多
关键词 alpine ecosystems climate change DROUGHT Tibetan Plateau
原文传递
Considerations of Forest Distribution and Native Tree Species for Afforestation in the High Altitudes on the Eastern Tibetan Plateau 被引量:1
5
作者 SHI Peili ZHENG Lili +2 位作者 ZHOU Tiancai HOU Ge ZHAO Guangshuai 《Journal of Resources and Ecology》 CSCD 2022年第1期100-106,共7页
Forests are the main components of terrestrial ecosystems and play an important role in the protection and construction of the national ecological security barrier. For a long time, China’s large-scale afforestation ... Forests are the main components of terrestrial ecosystems and play an important role in the protection and construction of the national ecological security barrier. For a long time, China’s large-scale afforestation had been practiced in areas with rainfall higher than the 400 mm threshold, but the issue of afforestation in high altitudes on the Tibetan Plateau remains elusive in both practical experience and theoretical exploration. It is worth thinking further about what principles should be followed in the selection of tree species and suitable altitudes for afforestation in high-altitude areas, as well as what experiences and lessons of previous afforestation efforts should be applied in high-altitude areas. As per the law of vegetation zonal distribution, this paper argues that afforestation at high altitudes should comply with the principle of vegetation zonal distribution and the low temperature limitation,and points out that afforestation is feasible only within the forest distribution area and below the altitudes of climate timberlines. Furthermore, we demonstrate the potential spatial areas of afforestation, and determine the local tree species that may be used for afforestation based on the existing problems of afforestation in eastern Tibet. In summary, afforestation in high-altitude areas of the eastern Tibetan Plateau must comply with the law of zonal vegetation distribution, focus on the upper limit of altitude and the selection of suitable tree species, and adopt only suitable native tree species. 展开更多
关键词 eastern Tibetan Plateau natural forest distribution climatic treeline low-temperature limitation afforestation upper limit afforestation species selection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部