In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two th...In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.展开更多
From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migr...From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migration of sequestered CO_(2).Seismic monitoring results are limited by the acquisition and signal-to-noise ratio of the acquired data.The multiphysical reservoir simulation provides information regarding the CO_(2) fluid behavior,and the approximated model should be calibrated with the monitoring results.In this work,property models are delivered from the multiphysical model during 3D repeated seismic surveys.The simulated seismic data based on the models are compared with the real data,and the results validate the effectiveness of the multiphysical inversion method.Time-lapse analysis shows the trend of CO_(2) migration during and after injection.展开更多
The Qilian Orogenic belt is one of the typical orogenic belts globally and a natural laboratory for studying plate tectonics.Many researchers have studied the ophiolite and high pressure and ultra-high pressure metamo...The Qilian Orogenic belt is one of the typical orogenic belts globally and a natural laboratory for studying plate tectonics.Many researchers have studied the ophiolite and high pressure and ultra-high pressure metamorphic rocks in the Qilian orogen and obtained valuable achievements.However,a hot debate exists on the basement property,the distribution of ophiolite,and the boundaries of tectonic units.Large-scale high-precision aeromagnetic surveys have recently been conducted in the Qilian Orogenic belt and adjacent areas.In this study,we are trying to analysis the tectonic framework of the Qilian Orogen using 1:500,000 aeromagnetic data.The results provide geophysical perspectives for studying the structural framework and deformation of this area.According to the aeromagnetic∆T anomaly map,the central and Southern Qilian have the same magnetic anomaly feature that noticeably differs from the North Qilian Orogenic belt and the Qaidam Block.This result indicates that the central and Southern Qilian have a unified magnetic basement and differ from the North Qilian orogenic belt and Qaidam Block.The map shows the distribution of ophiolite in the North Qilian orogenic belt.Linear magnetic anomalies represent the ophiolites because the mafic–ultramafic rocks usually have high magnetic susceptibility.The ophiolite belts are continuously distributed in the western part of North Qilian orogenic belt and have a large scale.However,the scale of the ophiolite belt and the outcropping of mafic–ultramafic rocks reduces when they pass through Qilian County to the east.The results indicate differences in the evolution process between the eastern and western parts of North Qilian,with Qilian County as the transition zone.This study also systematically defines the geophysical boundaries of the Qaidam Block,Qilian Block,North Qilian Orogenic belt,and Alxa block.It is proposed that the sinistral displacement of the Altun Fault is adjusted and absorbed by the series of NE-trending faults in the Qilian orogen and merge into the Longshoushan–Gushi Fault.The extension of the North Qilian Orogenic belt is strengthened by the neotectonics movement along the shearing direction,which separated the North Qilian Orogenic belt into several segments and formed a series of northeast-trending faults.展开更多
With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is f...With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is favorable for prospecting conductive layers because of the coupling relationship between its field structure and formation. However, the shielding effect of conductive overburden would not only require a longer observation time when prospecting the same depth but also weaken the anomalous response of underlying layers. Through direct time domain numerical simulation and horizontal layered earth forward modeling, this paper estimates the length of observation time required to prospect the target, and the distinguishable criterion of multilayer water-filled goal is presented with observation error according to the effect of noise on observation data. The observed emf curves from Dazigou Coal Mine, Shanxi Province can distinguish multilayer water-filled goaf. In quantitative inversion interpretation of observed curves, using electric logging data as initial parameters restrains the equivalence caused by coal formation thin layers. The deduced three-layer and two-layer water-filled goals are confirmed by the drilling hole. The result suggests that when observation time is long enough and with the anomalous situation of underlying layers being greater than the observation error, the use of the central loop TEM method to orosoect a multilaver water-filled goaf is feasible.展开更多
Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic...Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, time- consuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.展开更多
Ultrasonic coda waves are widely usea to stuay hign-trequency scattering, however, ultrasonic coda waves are strongly affected by interference from by boundary-reflected waves. To understand the effect of boundary-ref...Ultrasonic coda waves are widely usea to stuay hign-trequency scattering, however, ultrasonic coda waves are strongly affected by interference from by boundary-reflected waves. To understand the effect of boundary-reflected waves, we performed ultrasonic experiments using aluminum and shale samples, and the rotating staggered-mesh finite-difference method to simulate the wavefield. We analyzed the wavefield characteristics at the different receiving points and the interference characteristics of the boundary-reflected waves with the ultrasonic coda wave, and the effect of sample geometry on the ultrasonic coda waves. The increase in the aspect ratio of the samples delays the interference effect of the laterally reflected waves and reduces the effect on the ultrasonic coda waves. The main waves interfering with the ultrasonic coda waves are laterally reflected PP-, PS-, PPP-, and PPS-waves. The scattering and attenuation of the high-frequency energy in actual rocks can weaken the interference of laterally reflected waves with the ultrasonic coda waves.展开更多
To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the freque...To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the frequency domain,the influence of Gaussian as well as outlier noise on the convergence of the algorithm is effectively avoided.In other words,the proposed algorithm avoids data noise effects by implementing the calculations in the frequency domain.Moreover,the computational efficiency is greatly improved compared with the conventional method.Generalized cross validation is introduced in the solving process to optimize the regularization parameter and thus the algorithm is equipped with strong self-adaptation.Different theoretical models are built and solved using the algorithms in both time and frequency domains.Finally,the proposed and the conventional methods are both used to process actual seismic data.The comparison of the results confirms the superiority of the proposed algorithm due to its noise resistance and self-adaptation capability.展开更多
The nomaal moveout correction is important to long-offset observations, especially deep layers. For isotropic media, the conventional two-term approximation of the normal moveout function assumes a small offset-to-dep...The nomaal moveout correction is important to long-offset observations, especially deep layers. For isotropic media, the conventional two-term approximation of the normal moveout function assumes a small offset-to-depth ratio and thus fails at large offset-to-depth ratios. We approximate the long-offset moveout using the Pade approximation. This method is superior to typical methods and flattens the seismic gathers over a wide range of offsets in multilayered media. For a four-layer model, traditional methods show traveltime errors of about 5 ms for offset-to-depth ratio of 2 and greater than 10 ms for offset-to-depth ratio of 3; in contrast, the maximum traveltime error for the [3, 3]-order Pade approximation is no more than 5 ms at offset-to-depth ratio of 3. For the Cooper Basin model, the maximum oft'set-to-depth ratio for the [3, 3]-order Pade approximation is typically double of those in typical methods. The [7, 7]-order Pade approximation performs better than the [3.3]-order Pade armroximation.展开更多
The Tilted tilted transversely isotropic(TTI)media,a kind of anisotropic medium,widely exists within the earth.For faster calculation of travel times in the TTI anisotropic media,we modifi ed a minimum traveltime tree...The Tilted tilted transversely isotropic(TTI)media,a kind of anisotropic medium,widely exists within the earth.For faster calculation of travel times in the TTI anisotropic media,we modifi ed a minimum traveltime tree algorithm with high effi ciency by dynamical modifi cation of the secondary wave propagation region during the spread of seismic waves.To manage the wavefront points in the modified version,we used a novel minimum heap sorting technique to reduce the time spent on selecting secondary waves points.In this study,seismic group velocities were obtained from analytical solutions in terms of phase angle,and the corresponding phase angles were determined by binary search rather than approximate equations for weakly anisotropic media.For the most time-consuming part of the secondary wave traveltime calculation,the parallel computation was initially performed using multiple cores and threads.Numerical examples showed that the improved method can calculate seismic travel times and ray paths faster and accurately in a 3D TTI medium.For four cores and eight threads,the computing speed increased by six times when compared to the conventional method.展开更多
The airwave effect greatly influences the observational data from controlledsource electromagnetic exploration in shallow seas, which obscures the abnormal effects generated by exploration targets and, hence, affects ...The airwave effect greatly influences the observational data from controlledsource electromagnetic exploration in shallow seas, which obscures the abnormal effects generated by exploration targets and, hence, affects the accuracy of the late exploration data interpretation. In this study, we propose a method to separate the main part from the anomalous field of marine controlled-source electromagnetic method (MCSEM) data based on Stratton-Chu integral transforms to eliminate the airwave effect, which dominates observed electromagnetic (EM) response in shallow seawater. This method of separating the main part from the anomalous field is a type of finite impulse response filter based on a discrete data set. Theoretical analysis proved that the method is stable and able to effectively depress noise. A numerical test indicated that the method could successfully eliminate the airwave effect from the observed EM signals generated by an air water interface and a seawater layer. This technique is applicable for seawater models with either flat or rough seabeds.展开更多
Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground refl...Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground reflectivity models. LSM reduces the migration artifacts, enhances the spatial resolution of the migrated images, and yields a more accurate subsurface reflectivity distribution than that of standard migration. The introduction of regularization constraints effectively improves the stability of the least-squares offset. The commonly used regularization terms are based on the L2-norm, which smooths the migration results, e.g., by smearing the reflectivities, while providing stability. However, in exploration geophysics, reflection structures based on velocity and density are generally observed to be discontinuous in depth, illustrating sparse reflectance. To obtain a sparse migration profile, we propose the super-resolution least-squares Kirchhoff prestack depth migration by solving the L0-norm-constrained optimization problem. Additionally, we introduce a two-stage iterative soft and hard thresholding algorithm to retrieve the super-resolution reflectivity distribution. Further, the proposed algorithm is applied to complex synthetic data. Furthermore, the sensitivity of the proposed algorithm to noise and the dominant frequency of the source wavelet was evaluated. Finally, we conclude that the proposed method improves the spatial resolution and achieves impulse-like reflectivity distribution and can be applied to structural interpretations and complex subsurface imaging.展开更多
基金supported by project XJZ2023050044,A2309002 and XJZ2023070052.
文摘In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.
基金supported by the National Natural Science Foundation of China(Grant No.42025403)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2023074).
文摘From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migration of sequestered CO_(2).Seismic monitoring results are limited by the acquisition and signal-to-noise ratio of the acquired data.The multiphysical reservoir simulation provides information regarding the CO_(2) fluid behavior,and the approximated model should be calibrated with the monitoring results.In this work,property models are delivered from the multiphysical model during 3D repeated seismic surveys.The simulated seismic data based on the models are compared with the real data,and the results validate the effectiveness of the multiphysical inversion method.Time-lapse analysis shows the trend of CO_(2) migration during and after injection.
基金supported by the National Natural Science Foundation of China grant(U2244220)China Geological Survey Project grant(DD20190551,DD20230351)。
文摘The Qilian Orogenic belt is one of the typical orogenic belts globally and a natural laboratory for studying plate tectonics.Many researchers have studied the ophiolite and high pressure and ultra-high pressure metamorphic rocks in the Qilian orogen and obtained valuable achievements.However,a hot debate exists on the basement property,the distribution of ophiolite,and the boundaries of tectonic units.Large-scale high-precision aeromagnetic surveys have recently been conducted in the Qilian Orogenic belt and adjacent areas.In this study,we are trying to analysis the tectonic framework of the Qilian Orogen using 1:500,000 aeromagnetic data.The results provide geophysical perspectives for studying the structural framework and deformation of this area.According to the aeromagnetic∆T anomaly map,the central and Southern Qilian have the same magnetic anomaly feature that noticeably differs from the North Qilian Orogenic belt and the Qaidam Block.This result indicates that the central and Southern Qilian have a unified magnetic basement and differ from the North Qilian orogenic belt and Qaidam Block.The map shows the distribution of ophiolite in the North Qilian orogenic belt.Linear magnetic anomalies represent the ophiolites because the mafic–ultramafic rocks usually have high magnetic susceptibility.The ophiolite belts are continuously distributed in the western part of North Qilian orogenic belt and have a large scale.However,the scale of the ophiolite belt and the outcropping of mafic–ultramafic rocks reduces when they pass through Qilian County to the east.The results indicate differences in the evolution process between the eastern and western parts of North Qilian,with Qilian County as the transition zone.This study also systematically defines the geophysical boundaries of the Qaidam Block,Qilian Block,North Qilian Orogenic belt,and Alxa block.It is proposed that the sinistral displacement of the Altun Fault is adjusted and absorbed by the series of NE-trending faults in the Qilian orogen and merge into the Longshoushan–Gushi Fault.The extension of the North Qilian Orogenic belt is strengthened by the neotectonics movement along the shearing direction,which separated the North Qilian Orogenic belt into several segments and formed a series of northeast-trending faults.
基金supported by the National Science Foundation of China(No.41374129)Science and Technology Project of Shanxi Province(No.20100321066)Research and Development Project of National Major Scientifi c Research Equipment(No.ZDYZ2012-1-05-04)
文摘With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is favorable for prospecting conductive layers because of the coupling relationship between its field structure and formation. However, the shielding effect of conductive overburden would not only require a longer observation time when prospecting the same depth but also weaken the anomalous response of underlying layers. Through direct time domain numerical simulation and horizontal layered earth forward modeling, this paper estimates the length of observation time required to prospect the target, and the distinguishable criterion of multilayer water-filled goal is presented with observation error according to the effect of noise on observation data. The observed emf curves from Dazigou Coal Mine, Shanxi Province can distinguish multilayer water-filled goaf. In quantitative inversion interpretation of observed curves, using electric logging data as initial parameters restrains the equivalence caused by coal formation thin layers. The deduced three-layer and two-layer water-filled goals are confirmed by the drilling hole. The result suggests that when observation time is long enough and with the anomalous situation of underlying layers being greater than the observation error, the use of the central loop TEM method to orosoect a multilaver water-filled goaf is feasible.
基金supported by NSFC(Grant No.U1562109 and 41774082)the National Major Research Plan(Grant No.2016YFC0601100and 2016ZX05004)the Project of Scientific Research and Technological Development,CNPC(Grant No.2017D-5006-16)
文摘Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, time- consuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.
基金supported by the Strategic Leading Science and Technology Programme(Class B)of the Chinese Academy of Sciences(No.XDB10010400)
文摘Ultrasonic coda waves are widely usea to stuay hign-trequency scattering, however, ultrasonic coda waves are strongly affected by interference from by boundary-reflected waves. To understand the effect of boundary-reflected waves, we performed ultrasonic experiments using aluminum and shale samples, and the rotating staggered-mesh finite-difference method to simulate the wavefield. We analyzed the wavefield characteristics at the different receiving points and the interference characteristics of the boundary-reflected waves with the ultrasonic coda wave, and the effect of sample geometry on the ultrasonic coda waves. The increase in the aspect ratio of the samples delays the interference effect of the laterally reflected waves and reduces the effect on the ultrasonic coda waves. The main waves interfering with the ultrasonic coda waves are laterally reflected PP-, PS-, PPP-, and PPS-waves. The scattering and attenuation of the high-frequency energy in actual rocks can weaken the interference of laterally reflected waves with the ultrasonic coda waves.
基金supported by the National Natural Science Foundation of China(No.NSFC 41204101)Open Projects Fund of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(No.PLN201733)+1 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2015051)Open Projects Fund of the Natural Gas and Geology Key Laboratory of Sichuan Province(No.2015trqdz03)
文摘To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the frequency domain,the influence of Gaussian as well as outlier noise on the convergence of the algorithm is effectively avoided.In other words,the proposed algorithm avoids data noise effects by implementing the calculations in the frequency domain.Moreover,the computational efficiency is greatly improved compared with the conventional method.Generalized cross validation is introduced in the solving process to optimize the regularization parameter and thus the algorithm is equipped with strong self-adaptation.Different theoretical models are built and solved using the algorithms in both time and frequency domains.Finally,the proposed and the conventional methods are both used to process actual seismic data.The comparison of the results confirms the superiority of the proposed algorithm due to its noise resistance and self-adaptation capability.
基金supported by the National Natural Science Foundation of China(Nos.41130418 and 41374061)the National Major Project of China(No.2011ZX05008-006)and the Youth Innovation Promotion Association CAS(No.2012054)
文摘The nomaal moveout correction is important to long-offset observations, especially deep layers. For isotropic media, the conventional two-term approximation of the normal moveout function assumes a small offset-to-depth ratio and thus fails at large offset-to-depth ratios. We approximate the long-offset moveout using the Pade approximation. This method is superior to typical methods and flattens the seismic gathers over a wide range of offsets in multilayered media. For a four-layer model, traditional methods show traveltime errors of about 5 ms for offset-to-depth ratio of 2 and greater than 10 ms for offset-to-depth ratio of 3; in contrast, the maximum traveltime error for the [3, 3]-order Pade approximation is no more than 5 ms at offset-to-depth ratio of 3. For the Cooper Basin model, the maximum oft'set-to-depth ratio for the [3, 3]-order Pade approximation is typically double of those in typical methods. The [7, 7]-order Pade approximation performs better than the [3.3]-order Pade armroximation.
基金funded by the National Key R&D Program of China (No. 2020YFA0710600)National Science Foundation of China (No. 41374098)the Special Fund of the Institute of Geophysics,China Earthquake Administration (No. DQJB19B40)
文摘The Tilted tilted transversely isotropic(TTI)media,a kind of anisotropic medium,widely exists within the earth.For faster calculation of travel times in the TTI anisotropic media,we modifi ed a minimum traveltime tree algorithm with high effi ciency by dynamical modifi cation of the secondary wave propagation region during the spread of seismic waves.To manage the wavefront points in the modified version,we used a novel minimum heap sorting technique to reduce the time spent on selecting secondary waves points.In this study,seismic group velocities were obtained from analytical solutions in terms of phase angle,and the corresponding phase angles were determined by binary search rather than approximate equations for weakly anisotropic media.For the most time-consuming part of the secondary wave traveltime calculation,the parallel computation was initially performed using multiple cores and threads.Numerical examples showed that the improved method can calculate seismic travel times and ray paths faster and accurately in a 3D TTI medium.For four cores and eight threads,the computing speed increased by six times when compared to the conventional method.
基金supported by the National Natural Science Foundation of China(No.41574067)863 Program(No.2012AA09A404)
文摘The airwave effect greatly influences the observational data from controlledsource electromagnetic exploration in shallow seas, which obscures the abnormal effects generated by exploration targets and, hence, affects the accuracy of the late exploration data interpretation. In this study, we propose a method to separate the main part from the anomalous field of marine controlled-source electromagnetic method (MCSEM) data based on Stratton-Chu integral transforms to eliminate the airwave effect, which dominates observed electromagnetic (EM) response in shallow seawater. This method of separating the main part from the anomalous field is a type of finite impulse response filter based on a discrete data set. Theoretical analysis proved that the method is stable and able to effectively depress noise. A numerical test indicated that the method could successfully eliminate the airwave effect from the observed EM signals generated by an air water interface and a seawater layer. This technique is applicable for seawater models with either flat or rough seabeds.
基金supported by the National Natural Science Foundation of China(No.41422403)
文摘Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground reflectivity models. LSM reduces the migration artifacts, enhances the spatial resolution of the migrated images, and yields a more accurate subsurface reflectivity distribution than that of standard migration. The introduction of regularization constraints effectively improves the stability of the least-squares offset. The commonly used regularization terms are based on the L2-norm, which smooths the migration results, e.g., by smearing the reflectivities, while providing stability. However, in exploration geophysics, reflection structures based on velocity and density are generally observed to be discontinuous in depth, illustrating sparse reflectance. To obtain a sparse migration profile, we propose the super-resolution least-squares Kirchhoff prestack depth migration by solving the L0-norm-constrained optimization problem. Additionally, we introduce a two-stage iterative soft and hard thresholding algorithm to retrieve the super-resolution reflectivity distribution. Further, the proposed algorithm is applied to complex synthetic data. Furthermore, the sensitivity of the proposed algorithm to noise and the dominant frequency of the source wavelet was evaluated. Finally, we conclude that the proposed method improves the spatial resolution and achieves impulse-like reflectivity distribution and can be applied to structural interpretations and complex subsurface imaging.