期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Catalytic Transformation of Oxygenated Organic Compounds into Pure Hydrogen
1
作者 薛鹤 刘俊旭 +1 位作者 夏彤岩 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第4期481-488,I0002,共9页
The continual growth in transportation fuels and more strict environmental legislations have led to immense interest in developing green biomass energy. In this work, a proposed catalytic transformation of oxygenated ... The continual growth in transportation fuels and more strict environmental legislations have led to immense interest in developing green biomass energy. In this work, a proposed catalytic transformation of oxygenated organic compounds (related to bio-oil) into pure hydrogen was desighed, involving the catalytic reforming of oxygenated organic compounds to hydrogen- rich mixture gas followed by the conversion of CO to CO2 via the water gas reaction and the removal of CO2. The optimization of the different reforming catalyst, the reaction conditions as well as various sources of oxygenated organic compounds were investigated in detail. The production of pure hydrogen, with the H2 content up to 99.96% and the conversion of 97.1%, was achieved by the integrated catalytic transformation. The reaction pathways were addressed based on the investigation of decomposition, catalytic reforming, and the water gas reaction. 展开更多
关键词 Oxygenated organic compounds HYDROGEN Catalytic reforming Water gasreaction
下载PDF
Catalytic Conversion of Biomass-Derived Polyols into Para-xylene over SiO2-Modified Zeolites 被引量:2
2
作者 Sheng-fei Wang Ming-hui Fan +1 位作者 Yu-ting He Quan-xin Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第4期513-520,I0003,共9页
This work proved that biomass-based polyols (sorbitol, xylitol, erythritol, glycerol and ethanediol) were able to be converted into high-value chemical (p-xylene) by catalytic cracking of polyols, alkylation of aromat... This work proved that biomass-based polyols (sorbitol, xylitol, erythritol, glycerol and ethanediol) were able to be converted into high-value chemical (p-xylene) by catalytic cracking of polyols, alkylation of aromatics, and the isomerization of xylenes over the SiO2-modified zeolites. Compared to the conventional HZSM-5 zeolite, the SiO2-containing zeolites considerably increased the selectivity and yield of p-xylene due to the reduction of external surface acidity and the narrowing of pore entrance. The influences of the methanol additive, reaction temperature, and types of polyols on the selectivity and yield of p-xylene were investigated in detail. Catalytic cracking of polyols with methanol significantly enhanced the production of p-xylene by the alkylation of toluene with methanol. The highest p-xylene yield of 10.9 C-mol% with a p-xylene/xylenes ratio of 91.1% was obtained over the 15wt%SiO2/HZSM-5 catalyst. The reaction pathway for the formation of p-xylene was addressed according to the study of the key reactions and the characterization of catalysts. 展开更多
关键词 Biomass-derived polyols PARA-XYLENE Catalytic conversion SiO2-modified HZSM-5
下载PDF
Crayfish Shell Waste as Safe Biosorbent for Removal of Cu^(2+)and Pb^(2+)from Synthetic Wastewater 被引量:1
3
作者 Wan-qun Hu Shuo Chen Hong Jiang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第5期842-852,I0030-I0033,I0013,共16页
Crayfish shell is an abundant natural waste and is also a potential biosorbent for pollutants,especially,heavy metals.In this study,the safety of the use of crayfish shell as a biosorbent was first assessed by release... Crayfish shell is an abundant natural waste and is also a potential biosorbent for pollutants,especially,heavy metals.In this study,the safety of the use of crayfish shell as a biosorbent was first assessed by release experiments involving primary heavy metal ions,such as Cu^(2+),Zn^(2+),and Cr^(3+),in aqueous solution under different environmental conditions.The release concentrations of heavy metals were dependent on pH,ionic strength,and humic acid;and the maximum release concentrations of heavy metals were still lower than the national standard.Specifically,Cu^(2+) and Pb^(2+) removal by crayfish shell in synthetic wastewater was investigated.The removal process involved biosorption,precipitation,and complexation,and the results indicate that crayfish shell is an excellent biosorbent for Cu^(2+) and Pb^(2+) removal.The precipitation step is particularly dependent on Ca species,pH,and temperature.The maximum removal capacities of Pb^(2+) and Cu^(2+) were 676.20 and 119.98 mg/g,respectively.The related precipitates and the generated complex products include Cu_(2)CO_(3)(OH)_(2),Ca_(2)CuO_(3),CuCO_(3),Pb_(2)CO_(3)(OH)_(2),CaPb_(3)O_(4),and PbCO_(3). 展开更多
关键词 Crayfish shell BIOSORPTION Safety Precipitation COMPLEXATION Heavy metal ions
下载PDF
等温滴定微量热法测定腐殖酸与不同含氧量碳纳米管的相互作用
4
作者 周超群 盛国平 《中国科学技术大学学报》 CAS CSCD 北大核心 2015年第2期117-122,158,共7页
利用批次吸附实验和等温滴定微量热技术(ITC)测定了碳纳米管(CNT)与腐殖酸(HA)相互作用的热力学参数,并研究了碳纳米管含氧量和离子强度的影响.批次吸附实验结果表明,碳纳米管与腐殖酸的结合强度和平衡吸附量随碳纳米管含氧量的增加而降... 利用批次吸附实验和等温滴定微量热技术(ITC)测定了碳纳米管(CNT)与腐殖酸(HA)相互作用的热力学参数,并研究了碳纳米管含氧量和离子强度的影响.批次吸附实验结果表明,碳纳米管与腐殖酸的结合强度和平衡吸附量随碳纳米管含氧量的增加而降低,随离子强度的增加而升高,证明了疏水作用力对二者的结合起了重要作用.ITC结果表明二者结合是放热反应,能形成稳定的CNT-HA复合物,加入腐殖酸后,体系的有序度增加,而负的熵变和焓变表明二者之间形成了氢键.以上结果有助于理解和研究腐殖质对碳纳米管在自然水体中迁移特性的影响. 展开更多
关键词 碳纳米管 腐殖酸 相互作用 等温滴定微量热 含氧量
下载PDF
Renewable p-Xylene Production by Co-catalytic Pyrolysis of Cellulose and Methanol 被引量:1
5
作者 Chi Tang Li-juan Zhu +1 位作者 Ming-hui Fan Quan-xin Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第6期843-850,734,共9页
This work developed a one-step process for renewable p-xylene production by co-catalytic fast pyrolysis (co-CFP) of cellulose and methanol over the different metal oxides modified ZSM5 catalysts. It has been proven th... This work developed a one-step process for renewable p-xylene production by co-catalytic fast pyrolysis (co-CFP) of cellulose and methanol over the different metal oxides modified ZSM5 catalysts. It has been proven that La2O3-modified ZSM5(80) catalyst was an effective one for the production of biobased p-xylene. The selectivity and yield of p-xylene strongly depended on the acidity of the catalysts, reaction temperature, and methanol content. The highest p-xylene yield of 14.5 C-mol% with a p-xylene/xylenes ratio of 86.8% was obtained by the co-CFP of cellulose with 33wt% methanol over 20%La2O3-ZSM5(80) catalyst. The deactivation of the catalysts during the catalytic pyrolysis process was investigated in detail.The reaction pathway for the formation of p-xylene from cellulose was proposed based on the analysis of products and the characterization of catalysts. 展开更多
关键词 CELLULOSE P-XYLENE Catalytic fast pyrolysis La2O3-modified ZSM5
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部