先对炭纤维布(CC)进行不同时间的硝酸热处理,随后采用一步溶剂热方法在炭纤维布上沉积NiCo2S4纳米颗粒。结果表明,随着酸处理时间的延长,炭纤维表面粗糙度增加,含氧量增加。当酸处理时间为12 h时,NiCo2S4在其表面负载最均匀,复合材料的...先对炭纤维布(CC)进行不同时间的硝酸热处理,随后采用一步溶剂热方法在炭纤维布上沉积NiCo2S4纳米颗粒。结果表明,随着酸处理时间的延长,炭纤维表面粗糙度增加,含氧量增加。当酸处理时间为12 h时,NiCo2S4在其表面负载最均匀,复合材料的电化学性能最优,在电流密度为1 A g-1时,比容量可达1 298 F g-1,当增大到20 A g-1时,容量仍可保持为原来的89.7%。在5 A g-1电流密度下,循环次数达到3 000次时,容量保持率为95.3%。将所得复合材料作为正极,纳米炭纤维布(CNF)为负极,组装成具有自支撑结构的非对称超级电容器,在功率密度754 W kg-1时,其能量密度可达37.5 Wh kg-1。展开更多
文摘先对炭纤维布(CC)进行不同时间的硝酸热处理,随后采用一步溶剂热方法在炭纤维布上沉积NiCo2S4纳米颗粒。结果表明,随着酸处理时间的延长,炭纤维表面粗糙度增加,含氧量增加。当酸处理时间为12 h时,NiCo2S4在其表面负载最均匀,复合材料的电化学性能最优,在电流密度为1 A g-1时,比容量可达1 298 F g-1,当增大到20 A g-1时,容量仍可保持为原来的89.7%。在5 A g-1电流密度下,循环次数达到3 000次时,容量保持率为95.3%。将所得复合材料作为正极,纳米炭纤维布(CNF)为负极,组装成具有自支撑结构的非对称超级电容器,在功率密度754 W kg-1时,其能量密度可达37.5 Wh kg-1。