期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的无人机遥感影像船只检测方法
被引量:
4
1
作者
罗巍
陈曙东
+1 位作者
龚立晨
李伟炜
《船舶物资与市场》
2019年第4期25-28,共4页
传统的目标检测方法针对海量无人机遥感影像检测精度不高,解译时效性差。本文提出一种基于深度学习的无人机遥感影像船只检测方法。首先,通过数据扩增、TTA多图检测和数据标注等手段对原始无人机影像数据进行预处理;然后,结合海量的卫...
传统的目标检测方法针对海量无人机遥感影像检测精度不高,解译时效性差。本文提出一种基于深度学习的无人机遥感影像船只检测方法。首先,通过数据扩增、TTA多图检测和数据标注等手段对原始无人机影像数据进行预处理;然后,结合海量的卫星影像船舶数据对网络进行预训练;最后,依托PyTorch深度学习框架,综合运用U-Net+MASK R-CNN模型融合策略及TTA多模型融合策略对模型进行训练。结果为了验证本文方法的先进性,将未融合U-Net语义分割结果生成的训练模型检测结果及面向对象方法通过构建规则集匹配模板得到的检测结果与本文方法一道进行精度评价。本文方法的检出率、漏检率和误检率分别为88.39%、11.61%和10.53%,优于其他算法。
展开更多
关键词
模型融合
检出率
误检率
漏检率
卷积神经网络
无人机遥感影像
深度学习
下载PDF
职称材料
题名
基于深度学习的无人机遥感影像船只检测方法
被引量:
4
1
作者
罗巍
陈曙东
龚立晨
李伟炜
机构
中国科学院微电子研究所智能制造与电子研发中心
中国科学院
大学
微电子
学院
出处
《船舶物资与市场》
2019年第4期25-28,共4页
基金
中国科学院先导专项资助项目(XDPB12)
文摘
传统的目标检测方法针对海量无人机遥感影像检测精度不高,解译时效性差。本文提出一种基于深度学习的无人机遥感影像船只检测方法。首先,通过数据扩增、TTA多图检测和数据标注等手段对原始无人机影像数据进行预处理;然后,结合海量的卫星影像船舶数据对网络进行预训练;最后,依托PyTorch深度学习框架,综合运用U-Net+MASK R-CNN模型融合策略及TTA多模型融合策略对模型进行训练。结果为了验证本文方法的先进性,将未融合U-Net语义分割结果生成的训练模型检测结果及面向对象方法通过构建规则集匹配模板得到的检测结果与本文方法一道进行精度评价。本文方法的检出率、漏检率和误检率分别为88.39%、11.61%和10.53%,优于其他算法。
关键词
模型融合
检出率
误检率
漏检率
卷积神经网络
无人机遥感影像
深度学习
分类号
TP751 [自动化与计算机技术—检测技术与自动化装置]
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的无人机遥感影像船只检测方法
罗巍
陈曙东
龚立晨
李伟炜
《船舶物资与市场》
2019
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部