Fluorescence induction kinetics was used to investigate the effects of dehydration and rehydration on photosynthesis of detached leaves of the desiccation_tolerant, resurrective plant Boea hygrometrica (Bunge) R. Br. ...Fluorescence induction kinetics was used to investigate the effects of dehydration and rehydration on photosynthesis of detached leaves of the desiccation_tolerant, resurrective plant Boea hygrometrica (Bunge) R. Br. In comparison with the desiccation_intolerant plant Chirita heterotricha Merr., the PSⅡphotochemical activity of Boea hygrometrica was characterized by a faster decline during dehydration and a much higher capacity of recovery during rehydration. By means of native PAGE, it was further shown that the thylakoid pigment_protein complexes of Boea hygrometrica were highly stable during dehydration and rehydration. These features may contribute to the extreme desiccation resistance of photosynthesis apparatus of resurrective plant Boea hygrometrica .展开更多
A high yielding rice mutant ( Oryza sativa L. cv. Zhenhui 249) with low chlorophyll b was recently discovered in the field. The mutant was mainly characterized by the decrease of the content of extrinsic antennae c...A high yielding rice mutant ( Oryza sativa L. cv. Zhenhui 249) with low chlorophyll b was recently discovered in the field. The mutant was mainly characterized by the decrease of the content of extrinsic antennae complex. This variation was shown in the stage when the leaves were expanding. When the leaves are at the final developmental stage, the content would approach to that of the wild type. It was discovered that only moderate amount of chlorophyll b decreased in this mutant. The photosynthetic apparatus of the mutant was rather stable in the whole life span of the leaf. The extrinsic antennae complex of the mutant might make efficient use of light and meanwhile reduce the production of O -· 2.展开更多
The photosynthetic functions and the sensitivity to photoinhibition were compared between two superhigh_yield hybrid rice (Oryza sativa L.) Liangyoupeijiu and X07S/Zihui 100, the newly developed from two parental line...The photosynthetic functions and the sensitivity to photoinhibition were compared between two superhigh_yield hybrid rice (Oryza sativa L.) Liangyoupeijiu and X07S/Zihui 100, the newly developed from two parental lines and traditional hybrid rice Shanyou 63 developed from three parental lines. The results showed that, as compared to Shanyou 63, the net photosynthetic rate of Liangyoupeijiu and X07S/Zihui 100 was 9.1% and 11.9% higher, the transpiration rate was 37.4% and 31.4% lower, and their water use efficiency was 74.2% and 63.5% higher respectively. After strong light (2 000 μmol photons·m -2 ·s -1 ) treatment for 2 h, the photochemical quantum yield and the photochemical quenching increased by 37.0% and 18.0% respectively in Liangyoupeijiu, 28.3% and 46.2% in X07S/Zihui 100, but decreased a little in Shanyou 63. The non_photochemical quenching decreased in Liangyoupeijiu and X07S/Zihui 100 (about 50%) but increased greatly in Shanyou 63 (about 50%). Better photosynthetic functions, higher water use efficiency and stronger resistance to photoinhibition, may be the physiological basis for the super high_yield of the two hybrid rice under study.展开更多
When plants absorb more light than that can be used for photosynthesis, the excessive energy can cause photoinhibition and even photooxidation of photosynthetic apparatus. Xanthophyll cycle-dependent photo-protection ...When plants absorb more light than that can be used for photosynthesis, the excessive energy can cause photoinhibition and even photooxidation of photosynthetic apparatus. Xanthophyll cycle-dependent photo-protection is believed to be the main mechanism for plants to deal with excessive light energy. This review focuses on molecular biological aspects and regulations of violaxanthin de-epoxidase and zeaxanthin epoxidase involved in xanthophyll cycle. We will summarize the functions of xanthophyll cycle, especially recent advances in its thermal dissipation mechanism of photoprotection. Some interesting issues deserving further study will be discussed.展开更多
The chlorophyll fluorescence parameters of Kobresia humilis Serg. and Polygonum viviparum L. grown at two different altitudes (3?200 m, 3?980 m) were measured and the ultrastructure of chloroplasts were observ...The chlorophyll fluorescence parameters of Kobresia humilis Serg. and Polygonum viviparum L. grown at two different altitudes (3?200 m, 3?980 m) were measured and the ultrastructure of chloroplasts were observed for studying the photosynthetic adaptability of plants to the influences of stress conditions in alpine environment. Rfd _values, the vitality index, in leaves of K. humilis and P.viviparum grown at 3?980 m were higher than those at 3?200 m. The higher ratio of F v/F o and F v/F m in leaves of K. humilis and P.viviparum indicated that the rate of photosynthetic conversion of light energy increased at higher altitude. Ratios of F v/F o and F v/F m and Rfd _values in K.humilis were higher than that in P.viviparum grown at the same altitude. There were more irregular chloroplasts in leaves of both species grown at higher altitude. Many irregular chloroplasts such as swollen thylakoid, deformed chloroplast envelope, were observed in P.viviparum grown at 3?980 m, but few in K. humilis . These results were discussed in relation to the photosynthetic adaptability of alpine plants and the different adaptive competence between K.humilis and P.viviparum .展开更多
Influence of high light stress on the photosynthesis of flag leaves of indica subspecies (cv. “Shanyou 63', sensitive to photoinhibition) and japonica subspecies (cv. “Wuyujing', resistant to photoin...Influence of high light stress on the photosynthesis of flag leaves of indica subspecies (cv. “Shanyou 63', sensitive to photoinhibition) and japonica subspecies (cv. “Wuyujing', resistant to photoinhibition) of rice ( Oryza sativa L.) was comparatively investigated. In both cultivars of rice, the excitation energy distribution between two photosystems was altered and the excitation energy transfer from light harvesting chlorophyll protein complexes to PSⅡ was inhibited by high light stress. These decreases were more pronounced in indica rice cultivar as compared to japonica one. The analysis of mild SDS_PAGE showed that in indica rice, high light stress almost disaggregated the trimer of light harvesting chlorophyll protein complexes of PSⅡ (LHC Ⅱ 1). The stress reduced the contents of internal antennae chlorophyll protein complexes of PSⅡ (CPa), light harvesting chlorophyll protein of PSⅠ (CPⅠa) and Chl a protein complex of PSⅠ reaction center (CPⅠ) as well as dimer of LHCⅡ (LHCⅡ 2) in indica rice. In japonica subspecies, however, high light stress depressed the contents of LHCⅡ 1, CPa and CPⅠa, but slightly impacted on CPⅠ content. Moreover, the increase in the contents of monomer of LHCⅡ by high light stress was found in both subspecies. In consistent with above results, analysis of polypeptide indicated that the amounts of 27 kD and 25 kD polypeptide of LHCⅡ in particular, as well as that of 21 kD polypeptide of CPⅠa were reduced by high light stress in both subspecies. It was found that, comparing with japonica rice, the stress pronouncedly diminished 43 kD and 47 kD proteins of CPa and 23 kD extrisic protein in indica rice.展开更多
Effects of photoinhibition and its recovery on photosynthetic functions of winter wheat (Triticum aestivum L.) under salt stress were studied. The results showed that several parameters associated with PSⅡ functions,...Effects of photoinhibition and its recovery on photosynthetic functions of winter wheat (Triticum aestivum L.) under salt stress were studied. The results showed that several parameters associated with PSⅡ functions, e.g. Fv/Fo?Fv/Fm and qP were not influenced by lower salt concentration (200 mmol/L NaCl) while CO 2 assimilation rate decreased significantly. When exposed to higher salt concentration (400 mmol/L NaCl), PSⅡ functions were significantly inhibited which led to the decrease of carbon assimilation. These results suggest that different concentrations of salt stress affected photosynthesis by different modes. Salt stress made photosynthesis more sensitive to strong light and led to more serious photoinhibition. Under lower concentration of salt stress, the Q B-non-reductive PSⅡ reaction centers formed at the beginning of photoinhibition could be effectively used to compose active PSⅡ reaction center (RC) and repair the reversible inactivated PSⅡ RC. Under higher concentration of salt stress, PSⅡ reaction centers were seriously damaged during photoinhibition, the Q B-non-reductive PSⅡ RC could only be partly effective at the early time of photoinhibition, thus led to the accumulation of Q B-non-reductive PSⅡ RC in the course of restoration under dim light.展开更多
It is well known that no chlorophyll synthesis and photosystem biogenesis have been detected in dark-grown angiosperm seedlings. However, in this report, we showed that both PS II and PS I could be formed in dark-grow...It is well known that no chlorophyll synthesis and photosystem biogenesis have been detected in dark-grown angiosperm seedlings. However, in this report, we showed that both PS II and PS I could be formed in dark-grown lotus (Nelumbo nucifera Gaertn.) seedlings. Lots of evidence were given: First I during the dark-grown period, the single fluorescence emission peak at 679 nm in lotus embryo red-shifted and transformed into the normal PS II fluorescence emission; Simultaneously, PS I fluorescence emission at 730 nm appeared and increased obviously; Second, with partial denaturing SDS-PAGE method, PS I chlorophyll-protein complex could be clearly separated from 10 days dark-grown lotus seedlings; Third, the existence of Lhca1 was also proved by Western blots. Moreover, measurements of electron transfer rate demonstrated that both PS II and PS I core in dark-grown lotus seedlings were photochemically active.展开更多
Angiosperms need light to synthesize chlorophyll, but lotus (Nelumbo nucifera Gaertn.) embryo was suspected to have the ability to form chlorophyll in the dark because lotus embryo can turn into green under the covera...Angiosperms need light to synthesize chlorophyll, but lotus (Nelumbo nucifera Gaertn.) embryo was suspected to have the ability to form chlorophyll in the dark because lotus embryo can turn into green under the coverage of four layers of integuments (cotyledon, seed coat, pericarp, lotus pod) which were thought impossible for light to pass through. The authors excluded this possibility based on two experimental results: First, enclosing the young lotus pod with aluminium foil, the growth of louts embryo continued, but the chlorophyll formation was seriously inhibited. A lot of protochlorophyllide, chlorophyll precursor, were accumulated, most of which were combined with LPOR (light dependent protochlorophyllide oxidoreductase). Second, DPOR (dark or light-independent protochlorophyllide oxidoreductase) was the enzyme necessary for chlorophyll synthesis in the dark. The genes encoding DPOR were conservative in many species, but no homologues could be found in lotus genome. Taken together, authers' results clearly demonstrated that lotus embryo synthesizes chlorophyll only through the light-dependent pathway.展开更多
The protective role of xanthophyll cycle in resurrection angiosperm Boea hygrometrica (Bunge) R.Br. was investigated by analysis of the changes of chlorophyll fluorescence and xanthophyll cycle components in response ...The protective role of xanthophyll cycle in resurrection angiosperm Boea hygrometrica (Bunge) R.Br. was investigated by analysis of the changes of chlorophyll fluorescence and xanthophyll cycle components in response to dehydration and rehydration in detached leaves under very weak light condition (3 mumol photons.m(-2).s(-1)) and in the dark. With declines in the values of PSII photochemical efficiency (Fv/Fm), PSII actual quantum yield (Phi(PSII)), photochemical quenching (qP) and non-photochemical quenching (NPQ) during dehydration, zeaxanthin significantly increased in control Boea leaves under very weak light condition, while no zeaxanthin accumulation was detected in Boea leaves treated with dithiothreitol (DTT) and Boea leaves in the dark, and after 3 d rehydration, the parameters Fv/Fm, Phi(PSII), qP and NPQ showed full recovery in control Boea leaves under very weak light condition, but the parameters only underwent partial recovery in Boea leaves treated with DTT and Boea leaves in the dark, suggesting that the recovery of photosystem II (PSII) photochemical activities in Boea leaves was obviously affected by treatments with DTT and darkness, therefore, zeaxanthin may play an important protective role in desiccated Boea leaves even under very weak light conditions.展开更多
文摘Fluorescence induction kinetics was used to investigate the effects of dehydration and rehydration on photosynthesis of detached leaves of the desiccation_tolerant, resurrective plant Boea hygrometrica (Bunge) R. Br. In comparison with the desiccation_intolerant plant Chirita heterotricha Merr., the PSⅡphotochemical activity of Boea hygrometrica was characterized by a faster decline during dehydration and a much higher capacity of recovery during rehydration. By means of native PAGE, it was further shown that the thylakoid pigment_protein complexes of Boea hygrometrica were highly stable during dehydration and rehydration. These features may contribute to the extreme desiccation resistance of photosynthesis apparatus of resurrective plant Boea hygrometrica .
文摘A high yielding rice mutant ( Oryza sativa L. cv. Zhenhui 249) with low chlorophyll b was recently discovered in the field. The mutant was mainly characterized by the decrease of the content of extrinsic antennae complex. This variation was shown in the stage when the leaves were expanding. When the leaves are at the final developmental stage, the content would approach to that of the wild type. It was discovered that only moderate amount of chlorophyll b decreased in this mutant. The photosynthetic apparatus of the mutant was rather stable in the whole life span of the leaf. The extrinsic antennae complex of the mutant might make efficient use of light and meanwhile reduce the production of O -· 2.
基金The State Key Basic Research and Development Plan(G1998010100)The Innovative Foundation of Laboratory of Photosynthesis Basic Research,Insitute of Botany,The Chinese Academy of Sciences
文摘The photosynthetic functions and the sensitivity to photoinhibition were compared between two superhigh_yield hybrid rice (Oryza sativa L.) Liangyoupeijiu and X07S/Zihui 100, the newly developed from two parental lines and traditional hybrid rice Shanyou 63 developed from three parental lines. The results showed that, as compared to Shanyou 63, the net photosynthetic rate of Liangyoupeijiu and X07S/Zihui 100 was 9.1% and 11.9% higher, the transpiration rate was 37.4% and 31.4% lower, and their water use efficiency was 74.2% and 63.5% higher respectively. After strong light (2 000 μmol photons·m -2 ·s -1 ) treatment for 2 h, the photochemical quantum yield and the photochemical quenching increased by 37.0% and 18.0% respectively in Liangyoupeijiu, 28.3% and 46.2% in X07S/Zihui 100, but decreased a little in Shanyou 63. The non_photochemical quenching decreased in Liangyoupeijiu and X07S/Zihui 100 (about 50%) but increased greatly in Shanyou 63 (about 50%). Better photosynthetic functions, higher water use efficiency and stronger resistance to photoinhibition, may be the physiological basis for the super high_yield of the two hybrid rice under study.
文摘When plants absorb more light than that can be used for photosynthesis, the excessive energy can cause photoinhibition and even photooxidation of photosynthetic apparatus. Xanthophyll cycle-dependent photo-protection is believed to be the main mechanism for plants to deal with excessive light energy. This review focuses on molecular biological aspects and regulations of violaxanthin de-epoxidase and zeaxanthin epoxidase involved in xanthophyll cycle. We will summarize the functions of xanthophyll cycle, especially recent advances in its thermal dissipation mechanism of photoprotection. Some interesting issues deserving further study will be discussed.
文摘The chlorophyll fluorescence parameters of Kobresia humilis Serg. and Polygonum viviparum L. grown at two different altitudes (3?200 m, 3?980 m) were measured and the ultrastructure of chloroplasts were observed for studying the photosynthetic adaptability of plants to the influences of stress conditions in alpine environment. Rfd _values, the vitality index, in leaves of K. humilis and P.viviparum grown at 3?980 m were higher than those at 3?200 m. The higher ratio of F v/F o and F v/F m in leaves of K. humilis and P.viviparum indicated that the rate of photosynthetic conversion of light energy increased at higher altitude. Ratios of F v/F o and F v/F m and Rfd _values in K.humilis were higher than that in P.viviparum grown at the same altitude. There were more irregular chloroplasts in leaves of both species grown at higher altitude. Many irregular chloroplasts such as swollen thylakoid, deformed chloroplast envelope, were observed in P.viviparum grown at 3?980 m, but few in K. humilis . These results were discussed in relation to the photosynthetic adaptability of alpine plants and the different adaptive competence between K.humilis and P.viviparum .
文摘Influence of high light stress on the photosynthesis of flag leaves of indica subspecies (cv. “Shanyou 63', sensitive to photoinhibition) and japonica subspecies (cv. “Wuyujing', resistant to photoinhibition) of rice ( Oryza sativa L.) was comparatively investigated. In both cultivars of rice, the excitation energy distribution between two photosystems was altered and the excitation energy transfer from light harvesting chlorophyll protein complexes to PSⅡ was inhibited by high light stress. These decreases were more pronounced in indica rice cultivar as compared to japonica one. The analysis of mild SDS_PAGE showed that in indica rice, high light stress almost disaggregated the trimer of light harvesting chlorophyll protein complexes of PSⅡ (LHC Ⅱ 1). The stress reduced the contents of internal antennae chlorophyll protein complexes of PSⅡ (CPa), light harvesting chlorophyll protein of PSⅠ (CPⅠa) and Chl a protein complex of PSⅠ reaction center (CPⅠ) as well as dimer of LHCⅡ (LHCⅡ 2) in indica rice. In japonica subspecies, however, high light stress depressed the contents of LHCⅡ 1, CPa and CPⅠa, but slightly impacted on CPⅠ content. Moreover, the increase in the contents of monomer of LHCⅡ by high light stress was found in both subspecies. In consistent with above results, analysis of polypeptide indicated that the amounts of 27 kD and 25 kD polypeptide of LHCⅡ in particular, as well as that of 21 kD polypeptide of CPⅠa were reduced by high light stress in both subspecies. It was found that, comparing with japonica rice, the stress pronouncedly diminished 43 kD and 47 kD proteins of CPa and 23 kD extrisic protein in indica rice.
文摘Effects of photoinhibition and its recovery on photosynthetic functions of winter wheat (Triticum aestivum L.) under salt stress were studied. The results showed that several parameters associated with PSⅡ functions, e.g. Fv/Fo?Fv/Fm and qP were not influenced by lower salt concentration (200 mmol/L NaCl) while CO 2 assimilation rate decreased significantly. When exposed to higher salt concentration (400 mmol/L NaCl), PSⅡ functions were significantly inhibited which led to the decrease of carbon assimilation. These results suggest that different concentrations of salt stress affected photosynthesis by different modes. Salt stress made photosynthesis more sensitive to strong light and led to more serious photoinhibition. Under lower concentration of salt stress, the Q B-non-reductive PSⅡ reaction centers formed at the beginning of photoinhibition could be effectively used to compose active PSⅡ reaction center (RC) and repair the reversible inactivated PSⅡ RC. Under higher concentration of salt stress, PSⅡ reaction centers were seriously damaged during photoinhibition, the Q B-non-reductive PSⅡ RC could only be partly effective at the early time of photoinhibition, thus led to the accumulation of Q B-non-reductive PSⅡ RC in the course of restoration under dim light.
文摘It is well known that no chlorophyll synthesis and photosystem biogenesis have been detected in dark-grown angiosperm seedlings. However, in this report, we showed that both PS II and PS I could be formed in dark-grown lotus (Nelumbo nucifera Gaertn.) seedlings. Lots of evidence were given: First I during the dark-grown period, the single fluorescence emission peak at 679 nm in lotus embryo red-shifted and transformed into the normal PS II fluorescence emission; Simultaneously, PS I fluorescence emission at 730 nm appeared and increased obviously; Second, with partial denaturing SDS-PAGE method, PS I chlorophyll-protein complex could be clearly separated from 10 days dark-grown lotus seedlings; Third, the existence of Lhca1 was also proved by Western blots. Moreover, measurements of electron transfer rate demonstrated that both PS II and PS I core in dark-grown lotus seedlings were photochemically active.
文摘Angiosperms need light to synthesize chlorophyll, but lotus (Nelumbo nucifera Gaertn.) embryo was suspected to have the ability to form chlorophyll in the dark because lotus embryo can turn into green under the coverage of four layers of integuments (cotyledon, seed coat, pericarp, lotus pod) which were thought impossible for light to pass through. The authors excluded this possibility based on two experimental results: First, enclosing the young lotus pod with aluminium foil, the growth of louts embryo continued, but the chlorophyll formation was seriously inhibited. A lot of protochlorophyllide, chlorophyll precursor, were accumulated, most of which were combined with LPOR (light dependent protochlorophyllide oxidoreductase). Second, DPOR (dark or light-independent protochlorophyllide oxidoreductase) was the enzyme necessary for chlorophyll synthesis in the dark. The genes encoding DPOR were conservative in many species, but no homologues could be found in lotus genome. Taken together, authers' results clearly demonstrated that lotus embryo synthesizes chlorophyll only through the light-dependent pathway.
文摘The protective role of xanthophyll cycle in resurrection angiosperm Boea hygrometrica (Bunge) R.Br. was investigated by analysis of the changes of chlorophyll fluorescence and xanthophyll cycle components in response to dehydration and rehydration in detached leaves under very weak light condition (3 mumol photons.m(-2).s(-1)) and in the dark. With declines in the values of PSII photochemical efficiency (Fv/Fm), PSII actual quantum yield (Phi(PSII)), photochemical quenching (qP) and non-photochemical quenching (NPQ) during dehydration, zeaxanthin significantly increased in control Boea leaves under very weak light condition, while no zeaxanthin accumulation was detected in Boea leaves treated with dithiothreitol (DTT) and Boea leaves in the dark, and after 3 d rehydration, the parameters Fv/Fm, Phi(PSII), qP and NPQ showed full recovery in control Boea leaves under very weak light condition, but the parameters only underwent partial recovery in Boea leaves treated with DTT and Boea leaves in the dark, suggesting that the recovery of photosystem II (PSII) photochemical activities in Boea leaves was obviously affected by treatments with DTT and darkness, therefore, zeaxanthin may play an important protective role in desiccated Boea leaves even under very weak light conditions.