期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Multi-Omics and Its Clinical Application in Hepatocellular Carcinoma:Current Progress and Future Opportunities 被引量:1
1
作者 Wanshui Yang Hanyu Jiang +5 位作者 Chao Liu Jingwei Wei Yu Zhou Pengyun Gong Bin Song Jie Tian 《Chinese Medical Sciences Journal》 CAS CSCD 2021年第3期173-186,共14页
Hepatocellular carcinoma(HCC)is the sixth most common malignancy and the fourth leading cause of cancer related death worldwide.China covers over half of cases,leading HCC to be a vital threaten to public health.Despi... Hepatocellular carcinoma(HCC)is the sixth most common malignancy and the fourth leading cause of cancer related death worldwide.China covers over half of cases,leading HCC to be a vital threaten to public health.Despite advances in diagnosis and treatments,high recurrence rate remains a major obstacle in HCC management.Multi-omics currently facilitates surveillance,precise diagnosis,and personalized treatment decision making in clinical setting.Non-invasive radiomics utilizes preoperative radiological imaging to reflect subtle pixel-level pattern changes that correlate to specific clinical outcomes.Radiomics has been widely used in histopathological diagnosis prediction,treatment response evaluation,and prognosis prediction.High-throughput sequencing and gene expression profiling enabled genomics and proteomics to identify distinct transcriptomic subclasses and recurrent genetic alterations in HCC,which would reveal the complex multistep process of the pathophysiology.The accumulation of big medical data and the development of artificial intelligence techniques are providing new insights for our better understanding of the mechanism of HCC via multi-omics,and show potential to convert surgical/intervention treatment into an antitumorigenic one,which would greatly advance precision medicine in HCC management. 展开更多
关键词 hepatocellular carcinoma radiomics PROTEOMICS GENOMICS multi-omics
下载PDF
Semi-supervised Long-tail Endoscopic Image Classification
2
作者 Runnan Cao Mengjie Fang +2 位作者 Hailing Li Jie Tian Di Dong 《Chinese Medical Sciences Journal》 CAS CSCD 2022年第3期171-180,I0002,共11页
Objective To explore the semi-supervised learning(SSL) algorithm for long-tail endoscopic image classification with limited annotations.Method We explored semi-supervised long-tail endoscopic image classification in H... Objective To explore the semi-supervised learning(SSL) algorithm for long-tail endoscopic image classification with limited annotations.Method We explored semi-supervised long-tail endoscopic image classification in HyperKvasir,the largest gastrointestinal public dataset with 23 diverse classes.Semi-supervised learning algorithm FixMatch was applied based on consistency regularization and pseudo-labeling.After splitting the training dataset and the test dataset at a ratio of 4:1,we sampled 20%,50%,and 100% labeled training data to test the classification with limited annotations.Results The classification performance was evaluated by micro-average and macro-average evaluation metrics,with the Mathews correlation coefficient(MCC) as the overall evaluation.SSL algorithm improved the classification performance,with MCC increasing from 0.8761 to 0.8850,from 0.8983 to 0.8994,and from 0.9075 to 0.9095 with 20%,50%,and 100% ratio of labeled training data,respectively.With a 20% ratio of labeled training data,SSL improved both the micro-average and macro-average classification performance;while for the ratio of 50% and 100%,SSL improved the micro-average performance but hurt macro-average performance.Through analyzing the confusion matrix and labeling bias in each class,we found that the pseudo-based SSL algorithm exacerbated the classifier’ s preference for the head class,resulting in improved performance in the head class and degenerated performance in the tail class.Conclusion SSL can improve the classification performance for semi-supervised long-tail endoscopic image classification,especially when the labeled data is extremely limited,which may benefit the building of assisted diagnosis systems for low-volume hospitals.However,the pseudo-labeling strategy may amplify the effect of class imbalance,which hurts the classification performance for the tail class. 展开更多
关键词 endoscopic image artificial intelligence semi-supervised learning long-tail distribution image classification
下载PDF
吲哚菁绿近红外荧光显像技术在肝细胞癌肝切除术中的应用价值 被引量:28
3
作者 刘兵 迟崇巍 +6 位作者 袁静 张爱群 段伟东 李崇辉 冷建军 田捷 董家鸿 《中华消化外科杂志》 CAS CSCD 北大核心 2016年第5期490-495,共6页
目的探讨吲哚菁绿近红外荧光显像技术在肝细胞癌肝切除术中的临床应用价值。方法采用前瞻性研究方法。收集2014年10月至2015年2月解放军总医院临床诊断为肝细胞癌预行肝切除术24例患者的临床病理资料。术前(20.0—120.0h,平均47.5... 目的探讨吲哚菁绿近红外荧光显像技术在肝细胞癌肝切除术中的临床应用价值。方法采用前瞻性研究方法。收集2014年10月至2015年2月解放军总医院临床诊断为肝细胞癌预行肝切除术24例患者的临床病理资料。术前(20.0—120.0h,平均47.5h)给予静脉注射吲哚菁绿(0.5mg/kg)。开腹暴露并游离肝脏后,手持荧光检测仪器探头,实时可视化显示肿瘤,并引导肿瘤完整切除后,继续对在体剩余肝脏尤其是切缘周围进行探测,将所有疑似病灶进行术中快速冷冻切片病理学检查。对离体肿瘤标本剖面进行荧光成像,结合病理学检查结果进行分析。观察指标:(1)术前发现肿瘤的荧光显像检查情况。(2)荧光显像检查发现新病灶情况。(3)离体标本肿瘤剖面荧光显像特点。(4)随访情况。采用电话或门诊随访,术后随访1年,每3个月复查一次增强CT及相关实验室检查,记录患者复发率和病死率。随访时间截至2015年10月。正态分布的计量资料采用平均数(范围)表示。结果(1)术前发现肿瘤的荧光显像检查情况:24例患者术前影像学检查发现24个肿瘤。其中能够在体肝脏表面肿瘤相应投射区域呈现荧光19个;肿瘤平均深度为0.36cm(0.00~0.65cm),平均直径为6.20cm(1.20~9.00cm)。未显现荧光5个,肿瘤平均深度为1.52cm(0.90~2.60cm),平均直径为4.60cm(1.50~7.80cm)。(2)荧光显像检查发现新发病灶情况:24例患者共发现新的疑似病灶13个,病灶平均深度为0.30cm(0.00~0.60cm),平均直径为0.65cm(0.20~1.20cm),术中快速冷冻切片病理学检查结果证实为肝硬化结节4个、癌3个(高分化1个、中分化2个)、异型增生2个、肝组织炎性改变2个、肝细胞脂肪变性2个。(3)离体标本肿瘤剖面荧光显像特点:24例患者的离体标本肿瘤中央剖开,探测剖面均显示很强的荧光。其中11个高分化肝癌均为肿瘤实质显像,而9个中分化肝癌中有2个属于肿瘤实质显像,7个为肿瘤周围肝组织环状显像,其他4例低分化肝癌则均属于肿瘤周围肝组织显像。(4)随访情况:术后24例患者随访1年,无死亡病例,其中3例患者肿瘤复发,平均复发时间为8.3个月(5.0~11.0个月)。复发患者均进行以外科治疗为主的综合治疗。结论吲哚菁绿介导近红外荧光显像技术能够在术中显示原发肿瘤部位,同时可探测到术前常规影像检查和术中视、触诊漏检的微小病灶,在提供术中肿瘤准确定位的同时,有助于肿瘤的彻底清除。 展开更多
关键词 肝肿瘤 吲哚菁绿 近红外光 荧光显像 外科手术
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部