Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)a...Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)as precursors,are extensively used as catalysts for VOCs oxidation due to their uniformity advantage.This review summarizes the developments in the LDH-derived VOCs heterogeneous catalytic oxidation over the last 10 years.Particularly,it addresses the VOCs abatement performance over MMO,noble metal/MMO,core-shell structured MMO,and integral MMO film catalysts originating from LDHs.Moreover,it highlights the water vapor effect and oxidation mechanism.This review indicates that LDH-based catalysts are a category of important VOCs oxidation materials.展开更多
A series of quaternary ammonium ionic liquids(ILs)were synthesized and employed as catalysts for the production of poly(isosorbide carbonate)(PIC)from diphenyl carbonate and isosorbide via a melt polycondensation proc...A series of quaternary ammonium ionic liquids(ILs)were synthesized and employed as catalysts for the production of poly(isosorbide carbonate)(PIC)from diphenyl carbonate and isosorbide via a melt polycondensation process.The relationship between the anions of the ILs and the catalytic activities was investigated,and the readily‐prepared IL tetraethylammonium imidazolate(TEAI)was found to exhibit the highest catalytic activity.After optimizing the reaction conditions,a PIC with a weight‐average molecular weight(Mw)of25600g/mol was obtained,in conjunction with an isosorbide conversion of92%.As a means of modifying the molecular flexibility and thermal properties of the PIC,poly(aliphatic diol‐co‐isosorbide carbonate)s(PAIC)s were successfully synthesized,again using TEAI,and polymers with Mw values ranging from29000to112000g/mol were obtained.13C NMR analyses determined that the PAIC specimens had random microstructures,while differential scanning calorimetry demonstrated that each of the PAICs were amorphous and had glass transition temperatures ranging from50to115°C.Thermogravimetric analyses found Td‐5%values ranging from316to332°C for these polymers.Based on these data,it is evident that the incorporation of linear or cyclohexane‐based diol repeating units changed the thermal properties of the PIC.展开更多
We report Ni/LaHA@ZrO2catalysts prepared by a facile modified successive adsorption and reaction method for CO methanation.N2adsorption,X‐ray diffraction,transmission electron microscopy,scanning electron microscopy,...We report Ni/LaHA@ZrO2catalysts prepared by a facile modified successive adsorption and reaction method for CO methanation.N2adsorption,X‐ray diffraction,transmission electron microscopy,scanning electron microscopy,thermogravimetric analysis,H2temperature‐programmed reduction,H2temperature‐programmed desorption,X‐ray photoelectron spectroscopy,thermogravimetric analysis,and inductively coupled plasma atomic emission spectrometry were used to characterize the samples.The results indicated that the ZrO2nanoparticles were distributed over the surface of the Ni/LaHA@ZrO2catalyst and even partially covered some Ni particles,resulting in the coating exerting a confinement effect.The excess ZrO2had an adverse effect on the enhancement of CO conversion because of the coverage of the surface Ni particles;however,the Ni/LaHA@ZrO2catalyst displayed much higher CH4selectivity than Ni/LaHA because of the activation of the byproduct CO2molecules by ZrO2species.Therefore,even though20Ni/LaHA@ZrO2‐5exhibited similar CO conversion as20Ni/LaHA,the use of the former resulted in a higher CH4yield than the use of the latter.A107‐h‐lifetime test revealed that the Ni/LaHA@ZrO2catalyst was highly stable with superior anti‐sintering and anti‐coking properties because of its coating structure and the promoter effect of ZrO2.展开更多
基金supported by the National Key R&D Program of China(2017YFC0211503,2016YFC0207100)the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(XDA23030300)+2 种基金the National Natural Science Foundation of China(21401200,51672273)the Open Research Fund of State Key Laboratory of Multi-phase Complex Systems(MPCS-2017-D-06)the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,CAS(CERAE201805)~~
文摘Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)as precursors,are extensively used as catalysts for VOCs oxidation due to their uniformity advantage.This review summarizes the developments in the LDH-derived VOCs heterogeneous catalytic oxidation over the last 10 years.Particularly,it addresses the VOCs abatement performance over MMO,noble metal/MMO,core-shell structured MMO,and integral MMO film catalysts originating from LDHs.Moreover,it highlights the water vapor effect and oxidation mechanism.This review indicates that LDH-based catalysts are a category of important VOCs oxidation materials.
基金supported by the National Key Projects for Fundamental Research and Development of China(2016YFB0600903)the National Natural Science Foundation of China(91434107,21506226,21476245)the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(QYZDY-SSW-JSC011)~~
文摘A series of quaternary ammonium ionic liquids(ILs)were synthesized and employed as catalysts for the production of poly(isosorbide carbonate)(PIC)from diphenyl carbonate and isosorbide via a melt polycondensation process.The relationship between the anions of the ILs and the catalytic activities was investigated,and the readily‐prepared IL tetraethylammonium imidazolate(TEAI)was found to exhibit the highest catalytic activity.After optimizing the reaction conditions,a PIC with a weight‐average molecular weight(Mw)of25600g/mol was obtained,in conjunction with an isosorbide conversion of92%.As a means of modifying the molecular flexibility and thermal properties of the PIC,poly(aliphatic diol‐co‐isosorbide carbonate)s(PAIC)s were successfully synthesized,again using TEAI,and polymers with Mw values ranging from29000to112000g/mol were obtained.13C NMR analyses determined that the PAIC specimens had random microstructures,while differential scanning calorimetry demonstrated that each of the PAICs were amorphous and had glass transition temperatures ranging from50to115°C.Thermogravimetric analyses found Td‐5%values ranging from316to332°C for these polymers.Based on these data,it is evident that the incorporation of linear or cyclohexane‐based diol repeating units changed the thermal properties of the PIC.
基金supported by the National Natural Science Foundation of China (21606146)Natural Science Foundation of Shandong Province (ZR2016BB17,2016ZRB01037)+3 种基金Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (2016RCJJ005,2016RCJJ006)Government Sponsored Visiting Scholar Foundation of Shandong University of Science and Technology (2016)Qingdao Postdoctoral Applied Research Project (2015202)China National Coal Association Science and Technology Research Program (MTKJ2016-266)~~
文摘We report Ni/LaHA@ZrO2catalysts prepared by a facile modified successive adsorption and reaction method for CO methanation.N2adsorption,X‐ray diffraction,transmission electron microscopy,scanning electron microscopy,thermogravimetric analysis,H2temperature‐programmed reduction,H2temperature‐programmed desorption,X‐ray photoelectron spectroscopy,thermogravimetric analysis,and inductively coupled plasma atomic emission spectrometry were used to characterize the samples.The results indicated that the ZrO2nanoparticles were distributed over the surface of the Ni/LaHA@ZrO2catalyst and even partially covered some Ni particles,resulting in the coating exerting a confinement effect.The excess ZrO2had an adverse effect on the enhancement of CO conversion because of the coverage of the surface Ni particles;however,the Ni/LaHA@ZrO2catalyst displayed much higher CH4selectivity than Ni/LaHA because of the activation of the byproduct CO2molecules by ZrO2species.Therefore,even though20Ni/LaHA@ZrO2‐5exhibited similar CO conversion as20Ni/LaHA,the use of the former resulted in a higher CH4yield than the use of the latter.A107‐h‐lifetime test revealed that the Ni/LaHA@ZrO2catalyst was highly stable with superior anti‐sintering and anti‐coking properties because of its coating structure and the promoter effect of ZrO2.