期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于有监督对比学习的航天信息获取与图像生成
1
作者 齐翌辰 赵伟超 《液晶与显示》 CAS CSCD 北大核心 2023年第11期1531-1541,共11页
为了提高获取开源航天信息的效率并解决开源航天信息内容较长、数量较为有限、应用常用文本分类模型鲁棒性较差以及文本信息不够直观等问题,本文提出一种基于有监督对比学习的航天信息分类方法。该方法基于带有注意力机制(Attention)的... 为了提高获取开源航天信息的效率并解决开源航天信息内容较长、数量较为有限、应用常用文本分类模型鲁棒性较差以及文本信息不够直观等问题,本文提出一种基于有监督对比学习的航天信息分类方法。该方法基于带有注意力机制(Attention)的双向长短期记忆网络(Bidirectional Long Short-Term Memory,BiLSTM),融合对比学习技术,对开源的信息进行处理并分析,进而高效地筛选出航天类的信息,利用unCLIP(un-Contrastive Language-Image Pre-Training)模型生成信息对应的图像。实验结果表明,对比CNN(Convolutional Neural Networks)、BiLSTM、Transformer和BiL⁃STM-Attention等常用的文本分类方法,该方法在准确率、召回率和F1-Score上均表现良好,其中F1-Score达到0.97,同时以图像的形式呈现信息,使信息更加清晰直观。本文方法可以充分使用网络公开的数据资源,有效地提取开源航天信息并生成对应图像,对航天信息的分析和研究具有重要价值。 展开更多
关键词 有监督文本分类 对比学习 文本生成图像 航天信息
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部