针对无人机编队飞行时双目视觉定位精确性差、计算量大、实时性不高的技术现状,对基于特征点的FAST定位和BRIEF旋转(Oriented fast and rotated brief,ORB)算法进行了改进,提出了一种适用于无人机双目视觉定位的算法。在改进ORB算法中,...针对无人机编队飞行时双目视觉定位精确性差、计算量大、实时性不高的技术现状,对基于特征点的FAST定位和BRIEF旋转(Oriented fast and rotated brief,ORB)算法进行了改进,提出了一种适用于无人机双目视觉定位的算法。在改进ORB算法中,采用提取目标区域、最近邻约束和随机抽样一致(Random sampling consensus,RANSAC)方法,提高了特征点提取与匹配效率,也提高了特征点匹配质量;对于双目视觉定位,提出了适用条件更加宽泛的双目视觉定位模型,并保证了模型的定位精度;最后使用卡尔曼滤波算法对无人机的定位信息进行估计,进一步提高了无人机的定位精度。实验表明,算法具有较高的精确性和实时性,满足无人机间的相对定位要求。展开更多
文摘针对无人机编队飞行时双目视觉定位精确性差、计算量大、实时性不高的技术现状,对基于特征点的FAST定位和BRIEF旋转(Oriented fast and rotated brief,ORB)算法进行了改进,提出了一种适用于无人机双目视觉定位的算法。在改进ORB算法中,采用提取目标区域、最近邻约束和随机抽样一致(Random sampling consensus,RANSAC)方法,提高了特征点提取与匹配效率,也提高了特征点匹配质量;对于双目视觉定位,提出了适用条件更加宽泛的双目视觉定位模型,并保证了模型的定位精度;最后使用卡尔曼滤波算法对无人机的定位信息进行估计,进一步提高了无人机的定位精度。实验表明,算法具有较高的精确性和实时性,满足无人机间的相对定位要求。