心血管疾病(cardiovascular diseases,CVDs)的高发病率和高死亡率已经严重影响了人类的生存质量.如何评估心脏功能、辅助临床CVDs诊疗和预后评估,是一个迫切需要解决的问题.针对这个问题,本文在前期心脏电影磁共振(cardiac cine magneti...心血管疾病(cardiovascular diseases,CVDs)的高发病率和高死亡率已经严重影响了人类的生存质量.如何评估心脏功能、辅助临床CVDs诊疗和预后评估,是一个迫切需要解决的问题.针对这个问题,本文在前期心脏电影磁共振(cardiac cine magnetic resonance,CCMR)图像左心肌分割的基础上,提出一种基于位移流U-Net(DispFlow_UNet)和生物力学变分自动编码器(variational autoencoder,VAE)的左心肌运动追踪方法:DispFlow_UNet_VAE.主要研究内容有:1)搭建压缩激励残差U-net网络精准分割左心肌,根据分割结果计算心室体积、心肌质量等,评估心脏整体功能;2)根据DispFlow_UNet_VAE估计CCMR图像连续帧之间的左心室运动,结合左心肌分割掩膜得到左心肌密集位移场;3)利用模拟数据真实位移场、临床数据集对追踪结果进行对比和评估.结果表明,本文追踪算法具有较高的精度和泛化能力.展开更多
文摘心血管疾病(cardiovascular diseases,CVDs)的高发病率和高死亡率已经严重影响了人类的生存质量.如何评估心脏功能、辅助临床CVDs诊疗和预后评估,是一个迫切需要解决的问题.针对这个问题,本文在前期心脏电影磁共振(cardiac cine magnetic resonance,CCMR)图像左心肌分割的基础上,提出一种基于位移流U-Net(DispFlow_UNet)和生物力学变分自动编码器(variational autoencoder,VAE)的左心肌运动追踪方法:DispFlow_UNet_VAE.主要研究内容有:1)搭建压缩激励残差U-net网络精准分割左心肌,根据分割结果计算心室体积、心肌质量等,评估心脏整体功能;2)根据DispFlow_UNet_VAE估计CCMR图像连续帧之间的左心室运动,结合左心肌分割掩膜得到左心肌密集位移场;3)利用模拟数据真实位移场、临床数据集对追踪结果进行对比和评估.结果表明,本文追踪算法具有较高的精度和泛化能力.