首先用构造性的方法证明:对于任意的 n 阶多元多项式函数,可以构造一个三层前向神经网络以任意精度逼近该多项式,所构造网络的隐层节点个数仅与多项式的维数 d 和阶数 n 有关.然后,我们给出实现这一逼近的具体算法.最后,给出两个算例进...首先用构造性的方法证明:对于任意的 n 阶多元多项式函数,可以构造一个三层前向神经网络以任意精度逼近该多项式,所构造网络的隐层节点个数仅与多项式的维数 d 和阶数 n 有关.然后,我们给出实现这一逼近的具体算法.最后,给出两个算例进一步验证所得的理论结果.本文结果对神经网络逼近多元多项式函数的具体网络构造以及实现这一逼近的方法等问题具有指导意义.展开更多
In this paper, we show the direct and converse theorems of strong type of approximation for modified Szasz operators. Rom these theorems, the characterization of approximation for these operators is derived. The obtai...In this paper, we show the direct and converse theorems of strong type of approximation for modified Szasz operators. Rom these theorems, the characterization of approximation for these operators is derived. The obtained results are similar to the corresponding ones of the Szasz operators.展开更多
The aim of the present paper is to prove direct and converse results for simultaneous approximation by modified Bernstein-Durrmeyer operators. A point-wise equivalence characterization of simultaneous approximation is...The aim of the present paper is to prove direct and converse results for simultaneous approximation by modified Bernstein-Durrmeyer operators. A point-wise equivalence characterization of simultaneous approximation is obtained.展开更多
文摘首先用构造性的方法证明:对于任意的 n 阶多元多项式函数,可以构造一个三层前向神经网络以任意精度逼近该多项式,所构造网络的隐层节点个数仅与多项式的维数 d 和阶数 n 有关.然后,我们给出实现这一逼近的具体算法.最后,给出两个算例进一步验证所得的理论结果.本文结果对神经网络逼近多元多项式函数的具体网络构造以及实现这一逼近的方法等问题具有指导意义.
基金Supported by the Foundation of Key Item of Science and Technology of Education Ministry of China(03142)Foundation of Higher School of Ningxia(JY2002107)
文摘In this paper, we show the direct and converse theorems of strong type of approximation for modified Szasz operators. Rom these theorems, the characterization of approximation for these operators is derived. The obtained results are similar to the corresponding ones of the Szasz operators.
基金Supported by Natural Science Foundation of Zhejiang Province(102002)
文摘The aim of the present paper is to prove direct and converse results for simultaneous approximation by modified Bernstein-Durrmeyer operators. A point-wise equivalence characterization of simultaneous approximation is obtained.