期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
三维各向异性裂缝介质正演模拟的三种交错网格适应性比较及Lebedev方法的改进 被引量:1
1
作者 徐云贵 廖建平 +4 位作者 周林 刘和秀 张青 谢敬涛 王立歆 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2023年第3期1164-1179,共16页
研究了三维各向异性裂缝介质的正演模拟的三种不同有限差分法,即标准交错网格(SSG)、旋转交错网格(RSG)和Lebedev方法(LS),详细对比分析这三种交错网格方法在模拟复杂各向异性介质的优势与局限.提出一种新的改进方法,简化了LS有限差分... 研究了三维各向异性裂缝介质的正演模拟的三种不同有限差分法,即标准交错网格(SSG)、旋转交错网格(RSG)和Lebedev方法(LS),详细对比分析这三种交错网格方法在模拟复杂各向异性介质的优势与局限.提出一种新的改进方法,简化了LS有限差分法在任意各向异性介质中的正演模拟.为了模拟三维大规模复杂各向异性介质的地震响应,提出一个优化的正演模拟计算流程:将模型参数分为模型介质参数和模型构造参数.该计算流程适用于三种有限差分法中的任何一种.使用LS方法实现任意三维各向异性裂缝介质地震响应的三维全波场模拟,通过使用三种不同的有限差分模拟方法进行二维和三维模型数值模拟试验,验证了所提出方法有效. 展开更多
关键词 标准交错网格 旋转交错网格 Lebedev方法 优化的正演模拟计算流程 地震正演模拟 三维各向异性裂缝介质
下载PDF
Bernoulli-based random undersampling schemes for 2D seismic data regularization 被引量:2
2
作者 蔡瑞 赵群 +3 位作者 佘德平 杨丽 曹辉 杨勤勇 《Applied Geophysics》 SCIE CSCD 2014年第3期321-330,351,352,共12页
Seismic data regularization is an important preprocessing step in seismic signal processing. Traditional seismic acquisition methods follow the Shannon–Nyquist sampling theorem, whereas compressive sensing(CS) prov... Seismic data regularization is an important preprocessing step in seismic signal processing. Traditional seismic acquisition methods follow the Shannon–Nyquist sampling theorem, whereas compressive sensing(CS) provides a fundamentally new paradigm to overcome limitations in data acquisition. Besides the sparse representation of seismic signal in some transform domain and the 1-norm reconstruction algorithm, the seismic data regularization quality of CS-based techniques strongly depends on random undersampling schemes. For 2D seismic data, discrete uniform-based methods have been investigated, where some seismic traces are randomly sampled with an equal probability. However, in theory and practice, some seismic traces with different probability are required to be sampled for satisfying the assumptions in CS. Therefore, designing new undersampling schemes is imperative. We propose a Bernoulli-based random undersampling scheme and its jittered version to determine the regular traces that are randomly sampled with different probability, while both schemes comply with the Bernoulli process distribution. We performed experiments using the Fourier and curvelet transforms and the spectral projected gradient reconstruction algorithm for 1-norm(SPGL1), and ten different random seeds. According to the signal-to-noise ratio(SNR) between the original and reconstructed seismic data, the detailed experimental results from 2D numerical and physical simulation data show that the proposed novel schemes perform overall better than the discrete uniform schemes. 展开更多
关键词 Seismic data regularization compressive sensing Bernoulli distribution sparse transform UNDERSAMPLING 1-norm reconstruction algorithm.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部