针对冬季多能源耦合下的热电联产机组(combined heat and power,CHP)电功率调节能力受限于热功率输出,引起电-热联合系统灵活性不足的问题。该文提出了在网侧与负荷侧异质能流的惯性特征下计及用户温度动态响应以及动态反馈特性的联合...针对冬季多能源耦合下的热电联产机组(combined heat and power,CHP)电功率调节能力受限于热功率输出,引起电-热联合系统灵活性不足的问题。该文提出了在网侧与负荷侧异质能流的惯性特征下计及用户温度动态响应以及动态反馈特性的联合优化运行方法。首先,从建立CHP可行域与运行点的分布特性出发,分析了可再生能源并网后CHP机组运行灵活性不足原因,并给出了不可运行点重新回归CHP运行域优化的措施。其次,构建了传输侧惯性、负荷侧惯性影响下用户温度动态响应的多时间耦合特征双层模型,上层目标为热电异构能源系统总成本最低,下层目标为用能总效用最低。最后,引入了机会约束规划来刻画可再生能源的不确定性,通过算例结果表明,该文所提出方法在保证大量CHP运行点重新收束情况下,实现了可再生能源消纳与用户用能体验的兼顾。展开更多
文摘针对冬季多能源耦合下的热电联产机组(combined heat and power,CHP)电功率调节能力受限于热功率输出,引起电-热联合系统灵活性不足的问题。该文提出了在网侧与负荷侧异质能流的惯性特征下计及用户温度动态响应以及动态反馈特性的联合优化运行方法。首先,从建立CHP可行域与运行点的分布特性出发,分析了可再生能源并网后CHP机组运行灵活性不足原因,并给出了不可运行点重新回归CHP运行域优化的措施。其次,构建了传输侧惯性、负荷侧惯性影响下用户温度动态响应的多时间耦合特征双层模型,上层目标为热电异构能源系统总成本最低,下层目标为用能总效用最低。最后,引入了机会约束规划来刻画可再生能源的不确定性,通过算例结果表明,该文所提出方法在保证大量CHP运行点重新收束情况下,实现了可再生能源消纳与用户用能体验的兼顾。