On basis of thermodynamic empirical equations, the thermodynamic parameters for the direct amination of isobutylene to tert‐butylamine, an atomically economic and green chemical reaction,were calculated. In particula...On basis of thermodynamic empirical equations, the thermodynamic parameters for the direct amination of isobutylene to tert‐butylamine, an atomically economic and green chemical reaction,were calculated. In particular, the equilibrium conversion of isobutylene under various reactionconditions close to those used in industry was calculated and discussed. Isobutylene amination is atemperature sensitive reaction due to its exothermic nature and isobutylene equilibrium conversiondecreases with temperature. However, kinetically, the amination reaction will be faster at ahigher temperature. Thus, there must be an optimum temperature for the reaction. A high pressureand n(NH3)/n(i‐C4H8) molar ratio promote the transformation of isobutylene to tert‐butylamine.Developing a highly efficient catalyst under mild reaction conditions is preferred for the aminationprocess. The reaction was investigated over a series of acidic zeolites. ZSM‐11 zeolite exhibited thebest performance with 14.2% isobutylene conversion (52.2% of the equilibrium conversion) and >99.0% tert‐butylamine selectivity. The effect of reaction conditions on the performance of the ZSM‐11 catalyst agreed with the thermodynamic results, which provides guidance for further catalyst development and reaction condition optimization.展开更多
基金supported by K. C. Wong Education FoundationYouth Innovation Promotion Association of CAS (20120155)Dalian Eminent Young Scientist Program (2015R009)~~
文摘On basis of thermodynamic empirical equations, the thermodynamic parameters for the direct amination of isobutylene to tert‐butylamine, an atomically economic and green chemical reaction,were calculated. In particular, the equilibrium conversion of isobutylene under various reactionconditions close to those used in industry was calculated and discussed. Isobutylene amination is atemperature sensitive reaction due to its exothermic nature and isobutylene equilibrium conversiondecreases with temperature. However, kinetically, the amination reaction will be faster at ahigher temperature. Thus, there must be an optimum temperature for the reaction. A high pressureand n(NH3)/n(i‐C4H8) molar ratio promote the transformation of isobutylene to tert‐butylamine.Developing a highly efficient catalyst under mild reaction conditions is preferred for the aminationprocess. The reaction was investigated over a series of acidic zeolites. ZSM‐11 zeolite exhibited thebest performance with 14.2% isobutylene conversion (52.2% of the equilibrium conversion) and >99.0% tert‐butylamine selectivity. The effect of reaction conditions on the performance of the ZSM‐11 catalyst agreed with the thermodynamic results, which provides guidance for further catalyst development and reaction condition optimization.