期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于麻雀搜索算法优化的四种神经网络模型在三七茎粗预测中的效果评估
1
作者 商晓剑 张瑞 《湖北农业科学》 2024年第8期72-77,95,共7页
以1年生三七(Panax notoginseng)为研究对象,通过正交试验考察光、水、营养物质对三七茎粗的影响,利用麻雀搜索算法(Sparrow search algorithm,SSA)优化4种模型,分别为反向传播神经网络(Back propagation neural network,BPNN)、长短期... 以1年生三七(Panax notoginseng)为研究对象,通过正交试验考察光、水、营养物质对三七茎粗的影响,利用麻雀搜索算法(Sparrow search algorithm,SSA)优化4种模型,分别为反向传播神经网络(Back propagation neural network,BPNN)、长短期记忆神经网络(Long short term memory,LSTM)、随机森林(Random forest,RF)和广义回归神经网络(General regression neural network,GRNN),并应用这4种模型对三七茎粗进行预测。结果表明,光照、水肥等非生物因素对三七茎粗具有明显影响,各因素对三七茎粗的影响程度依次为遮光层数>土壤含水量>矿源黄腐酸钾含量>光照时长。SSA-GRNN模型的决定系数最高,为0.865 6,其次为SSA-RF模型、SSA-BPNN模型、SA-LSTM模型;SSA-GRNN模型的MAE和MSE分别为0.064 1、0.008 7,均低于SSA-BPNN模型、SSA-LSTM模型、SSA-RF模型;SSA-RF模型和SSA-LSTM模型的适应度较大,且陷入了局部最优的情况,从而无法达到全局最优解,SSA-GRNN模型的适应度最小且以最少的迭代次数达到了最佳的适应度。 展开更多
关键词 三七(Panax notoginseng) 茎粗 神经网络模型 麻雀搜索算法 预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部