期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于矩阵分解和注意力多任务学习的客服投诉工单分类
被引量:
4
1
作者
宋勇
严志伟
+4 位作者
秦玉坤
赵东明
叶晓舟
柴园园
欧阳晔
《电信科学》
2022年第2期103-110,共8页
投诉工单自动分类是通信运营商客服数字化、智能化发展的要求。客服投诉工单的类别有多层,每一层有多个标签,层级之间有所关联,属于典型的层次多标签文本分类问题,现有解决方法大多数基于分类器同时处理所有的分类标签,或者对每一层级...
投诉工单自动分类是通信运营商客服数字化、智能化发展的要求。客服投诉工单的类别有多层,每一层有多个标签,层级之间有所关联,属于典型的层次多标签文本分类问题,现有解决方法大多数基于分类器同时处理所有的分类标签,或者对每一层级分别使用多个分类器进行处理,忽略了层次结构之间的依赖。提出了一种基于矩阵分解和注意力的多任务学习的方法(MF-AMLA),处理层次多标签文本分类任务。在通信运营商客服场景真实投诉工单分类数据下,与该场景常用的机器学习算法和深度学习算法的Top1F1值相比分别最大提高了21.1%和5.7%。已在某移动运营商客服系统上线,模型输出的正确率97%以上,对客服坐席单位时间的处理效率提升22.1%。
展开更多
关键词
层次多标签分类
注意力机制
多任务学习
客服工单分类
下载PDF
职称材料
题名
基于矩阵分解和注意力多任务学习的客服投诉工单分类
被引量:
4
1
作者
宋勇
严志伟
秦玉坤
赵东明
叶晓舟
柴园园
欧阳晔
机构
亚
信
科技
(中国)
有限公司
通信
人工智能
实验室
通信
业务与应用算法研究部
亚
信
科技
(
南京
)
有限公司
通信
人工智能
实验室
中国移动
通信
集团天津
有限公司
亚
信
科技
(中国)
有限公司
出处
《电信科学》
2022年第2期103-110,共8页
文摘
投诉工单自动分类是通信运营商客服数字化、智能化发展的要求。客服投诉工单的类别有多层,每一层有多个标签,层级之间有所关联,属于典型的层次多标签文本分类问题,现有解决方法大多数基于分类器同时处理所有的分类标签,或者对每一层级分别使用多个分类器进行处理,忽略了层次结构之间的依赖。提出了一种基于矩阵分解和注意力的多任务学习的方法(MF-AMLA),处理层次多标签文本分类任务。在通信运营商客服场景真实投诉工单分类数据下,与该场景常用的机器学习算法和深度学习算法的Top1F1值相比分别最大提高了21.1%和5.7%。已在某移动运营商客服系统上线,模型输出的正确率97%以上,对客服坐席单位时间的处理效率提升22.1%。
关键词
层次多标签分类
注意力机制
多任务学习
客服工单分类
Keywords
hierarchical multi-label classification
attention mechanism
multi-task learning
customer service work order classification
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于矩阵分解和注意力多任务学习的客服投诉工单分类
宋勇
严志伟
秦玉坤
赵东明
叶晓舟
柴园园
欧阳晔
《电信科学》
2022
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部