森林对维护区域生态环境及全球碳平衡、缓解全球气候变化发挥着不可替代的作用,对森林地上生物量进行精确估测能够大大减小陆地生态系统碳储量的不确定性。本文结合机载激光雷达、星载激光雷达和成像光学遥感等数据进行大湄公河次区域...森林对维护区域生态环境及全球碳平衡、缓解全球气候变化发挥着不可替代的作用,对森林地上生物量进行精确估测能够大大减小陆地生态系统碳储量的不确定性。本文结合机载激光雷达、星载激光雷达和成像光学遥感等数据进行大湄公河次区域的森林地上生物量估测,生成连续的森林地上生物量图。结果表明:①基于星机地协同观测数据可以有效地估测森林地上生物量,模型总体平均误差为34t/hm^2,相关系数为0.7;②估测结果与FAO FRA 2010报告以及其它报告公布的结果相比,一致性较好,平均差异为13.3%;③根据本文的遥感反演结果,大湄公河次区域森林生物量总量为62.72亿t,其中常绿阔叶林占71%,落叶阔叶林占10%,常绿针叶林占16%,混交林占3%;④从各国(地区)的生物量总量来看,缅甸森林地上生物量总量最大,占22%,其次是中国云南省、老挝、泰国、越南、中国广西壮族自治区和柬埔寨。展开更多
文摘森林对维护区域生态环境及全球碳平衡、缓解全球气候变化发挥着不可替代的作用,对森林地上生物量进行精确估测能够大大减小陆地生态系统碳储量的不确定性。本文结合机载激光雷达、星载激光雷达和成像光学遥感等数据进行大湄公河次区域的森林地上生物量估测,生成连续的森林地上生物量图。结果表明:①基于星机地协同观测数据可以有效地估测森林地上生物量,模型总体平均误差为34t/hm^2,相关系数为0.7;②估测结果与FAO FRA 2010报告以及其它报告公布的结果相比,一致性较好,平均差异为13.3%;③根据本文的遥感反演结果,大湄公河次区域森林生物量总量为62.72亿t,其中常绿阔叶林占71%,落叶阔叶林占10%,常绿针叶林占16%,混交林占3%;④从各国(地区)的生物量总量来看,缅甸森林地上生物量总量最大,占22%,其次是中国云南省、老挝、泰国、越南、中国广西壮族自治区和柬埔寨。