期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
自适应监督下降方法的姿态鲁棒人脸对齐算法 被引量:4
1
作者 赵慧 景丽萍 于剑 《计算机科学与探索》 CSCD 北大核心 2020年第4期649-656,共8页
人脸对齐是人脸分析处理中的重要一步。由于现实中的人脸照片通常在姿态、光线等方面存在较大的差异,人脸对齐是一项艰巨的任务。初始关键点的位置以及特征提取对人脸对齐很重要。提出一种自适应监督下降方法(SDM)的姿态鲁棒人脸对齐算... 人脸对齐是人脸分析处理中的重要一步。由于现实中的人脸照片通常在姿态、光线等方面存在较大的差异,人脸对齐是一项艰巨的任务。初始关键点的位置以及特征提取对人脸对齐很重要。提出一种自适应监督下降方法(SDM)的姿态鲁棒人脸对齐算法。首先,为了减小姿态差异对人脸对齐的影响,使用聚类算法将图片按照姿态分成三类(正脸,左侧脸,右侧脸),这样每个类别下的姿态更加紧致。其次,考虑到人脸对齐是由粗到细的多阶段监督学习过程,采用自适应特征提取框(由大到小)来提取判别性特征。基于上述两种策略,在每个类别下,提供一个更好的初始关键点位置,通过自适应特征提取的SDM模型来进行回归模型的训练。选用LFPW、HELEN和300W数据集进行评估,实验结果表明,该模型在复杂姿态下能准确定位关键点,并且好于现有的人脸对齐算法。 展开更多
关键词 人脸对齐 人脸关键点定位 监督下降方法(SDM)模型 姿态鲁棒 自适应特征提取框
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部