在中国北方,冬季楼宇集中供暖采用的策略通常为气候补偿器,但是该策略严重依赖人工经验,调节相对粗放,如何优化供热控制策略对于保持楼宇室温的稳定舒适十分重要。对此,提出了一种基于深度学习的供热策略优化方法,通过学习历史真实数据...在中国北方,冬季楼宇集中供暖采用的策略通常为气候补偿器,但是该策略严重依赖人工经验,调节相对粗放,如何优化供热控制策略对于保持楼宇室温的稳定舒适十分重要。对此,提出了一种基于深度学习的供热策略优化方法,通过学习历史真实数据信息从而对原始控制策略进行优化。首先以学习室内温度变化的热力学规律为目标,提出了一种深度多时差分网络MTDN(Multiple Time Difference Network)来对下一时刻的室温进行预测,该网络不仅准确率高,而且符合物理规律;然后将MTDN当成模拟器,以表征人体热反应的评价指标作为相关奖励项,使用基于最大熵强化学习思想的SAC(Soft Actor Critic)算法作为策略优化器与之交互训练,从而学习到一个稳定优秀的供热控制策略;最后基于天津某个换热站的真实数据,设计相关实验分别对模拟器预测能力和策略优化器策略控制能力进行评估。验证得出:相比其他类型的预测模拟器,该模拟器不仅预测精度高,并且符合物理规律;同时,相比原始策略,该策略优化器所学的策略在随机采样的多个时段内均可以保证室内温度更加稳定舒适。展开更多
当前场景分类任务大多面向高分辨率遥感图像,由于缺乏光谱信息限制了它的场景鉴别能力,而高光谱遥感图像具有“空谱合一”的特性,在场景分类问题上具有独特优势。针对高光谱遥感图像中地物分布复杂,以及高光谱图像中维度高、存在冗余等...当前场景分类任务大多面向高分辨率遥感图像,由于缺乏光谱信息限制了它的场景鉴别能力,而高光谱遥感图像具有“空谱合一”的特性,在场景分类问题上具有独特优势。针对高光谱遥感图像中地物分布复杂,以及高光谱图像中维度高、存在冗余等问题,本文提出一种高光谱场景分类流形蒸馏网络(hyperspectral scene classification manifold distillation network,HSCMDNet),有效提高了分类性能。对于遥感图像地物分布复杂问题,HSCMDNet模型使用基于移位窗口的层次化视觉Transformer(hierarchical vision transformer using shifted windows,SwinT)作为教师网络来充分挖掘高光谱图像的长距离依赖信息,捕获不同波段之间的关系。在此基础上,在教师网络与ResNet-18学生网络之间设计流形蒸馏损失,通过在流形空间中匹配学生和教师的中间层输出特征实现教师模型的知识更有效地向轻量化学生模型转移,缓解了高光谱图像中维数高导致的高计算复杂性问题。在欧比特高光谱图像场景分类数据集(Orbita hyperspectral image scene classification dataset,OHID-SC)及天宫二号遥感图像自然场景分类数据集(natural scene classification with Tiangong-2 remotely sensed imagery,NaSC-TG2)上,所提出的HSCMDNet网络的最佳分类精度分别达到了93.60%和94.55%。展开更多
文摘在中国北方,冬季楼宇集中供暖采用的策略通常为气候补偿器,但是该策略严重依赖人工经验,调节相对粗放,如何优化供热控制策略对于保持楼宇室温的稳定舒适十分重要。对此,提出了一种基于深度学习的供热策略优化方法,通过学习历史真实数据信息从而对原始控制策略进行优化。首先以学习室内温度变化的热力学规律为目标,提出了一种深度多时差分网络MTDN(Multiple Time Difference Network)来对下一时刻的室温进行预测,该网络不仅准确率高,而且符合物理规律;然后将MTDN当成模拟器,以表征人体热反应的评价指标作为相关奖励项,使用基于最大熵强化学习思想的SAC(Soft Actor Critic)算法作为策略优化器与之交互训练,从而学习到一个稳定优秀的供热控制策略;最后基于天津某个换热站的真实数据,设计相关实验分别对模拟器预测能力和策略优化器策略控制能力进行评估。验证得出:相比其他类型的预测模拟器,该模拟器不仅预测精度高,并且符合物理规律;同时,相比原始策略,该策略优化器所学的策略在随机采样的多个时段内均可以保证室内温度更加稳定舒适。
文摘当前场景分类任务大多面向高分辨率遥感图像,由于缺乏光谱信息限制了它的场景鉴别能力,而高光谱遥感图像具有“空谱合一”的特性,在场景分类问题上具有独特优势。针对高光谱遥感图像中地物分布复杂,以及高光谱图像中维度高、存在冗余等问题,本文提出一种高光谱场景分类流形蒸馏网络(hyperspectral scene classification manifold distillation network,HSCMDNet),有效提高了分类性能。对于遥感图像地物分布复杂问题,HSCMDNet模型使用基于移位窗口的层次化视觉Transformer(hierarchical vision transformer using shifted windows,SwinT)作为教师网络来充分挖掘高光谱图像的长距离依赖信息,捕获不同波段之间的关系。在此基础上,在教师网络与ResNet-18学生网络之间设计流形蒸馏损失,通过在流形空间中匹配学生和教师的中间层输出特征实现教师模型的知识更有效地向轻量化学生模型转移,缓解了高光谱图像中维数高导致的高计算复杂性问题。在欧比特高光谱图像场景分类数据集(Orbita hyperspectral image scene classification dataset,OHID-SC)及天宫二号遥感图像自然场景分类数据集(natural scene classification with Tiangong-2 remotely sensed imagery,NaSC-TG2)上,所提出的HSCMDNet网络的最佳分类精度分别达到了93.60%和94.55%。