期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于WT-CNN-LSTM混合神经网络的电力系统负荷预测模型
1
作者 陈亮吉 朱晨君 《新型工业化》 2024年第7期132-141,共10页
随着电力在我国能源占比中的持续提升,电力预测在现代能源管理中具有不可替代的作用。由于电力结构的多元化以及影响因素的复杂化,传统的预测模型在电力负荷预测中存在局限性。本文结合小波变换(WT)与神经网络CNN-LSTM,将WT-CNN-LSTM混... 随着电力在我国能源占比中的持续提升,电力预测在现代能源管理中具有不可替代的作用。由于电力结构的多元化以及影响因素的复杂化,传统的预测模型在电力负荷预测中存在局限性。本文结合小波变换(WT)与神经网络CNN-LSTM,将WT-CNN-LSTM混合神经网络应用于电力系统的负荷预测,并与传统机器学习模型、时间序列预测模型进行对比,结果表明WT-CNN-LSTM神经网络在电力负荷预测上具有更高的准确性,能够为电力系统运行和规划提供参考依据。 展开更多
关键词 电力系统负荷预测 CNN-LSTM混合神经网络 小波变换 大数据
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部