提出了基于残差网络和注意力机制的LRAM(LSTM with ResNet and attention model)模型,在模型中引入残差模块(ResNet),加快了网络的收敛速度,降低了网络训练难度;引入注意力机制(AM),实现了不同序列对当前文本识别的权重分配,提高文本识...提出了基于残差网络和注意力机制的LRAM(LSTM with ResNet and attention model)模型,在模型中引入残差模块(ResNet),加快了网络的收敛速度,降低了网络训练难度;引入注意力机制(AM),实现了不同序列对当前文本识别的权重分配,提高文本识别的准确率.通过在Synth90K,Street View Text和ICDAR等数据集测试结果,与已存在的模型相比,LRAM性能超过现存其他网络模型.展开更多
文摘提出了基于残差网络和注意力机制的LRAM(LSTM with ResNet and attention model)模型,在模型中引入残差模块(ResNet),加快了网络的收敛速度,降低了网络训练难度;引入注意力机制(AM),实现了不同序列对当前文本识别的权重分配,提高文本识别的准确率.通过在Synth90K,Street View Text和ICDAR等数据集测试结果,与已存在的模型相比,LRAM性能超过现存其他网络模型.