大数据时代的来临为存储系统提供了新的机遇,同时也提出了新的挑战。传统的基于动态随机存储(DRAM)的内存架构面临着容量、能耗、可靠性等方面的问题;新型非易失存储器件(Non-Volatile Memory,NVM)具有非易失、字节寻址、空闲能耗低等优...大数据时代的来临为存储系统提供了新的机遇,同时也提出了新的挑战。传统的基于动态随机存储(DRAM)的内存架构面临着容量、能耗、可靠性等方面的问题;新型非易失存储器件(Non-Volatile Memory,NVM)具有非易失、字节寻址、空闲能耗低等优势,可以作为外存、内存或存储级内存(Storage Class Memory,SCM),为未来存储系统的变革提供了新选择,但同时也存在一些安全问题。NVM器件本身的耐久性有限,频繁对某一位置进行写操作时会造成该位置磨损,从而缩短设备的寿命;同时,由于具有非易失性,NVM被用作内存时,断电后数据不会丢失,攻击者可以通过窃取数据来提取敏感信息或对数据进行篡改;当NVM与DRAM构成混合内存时,可能会产生指针指向不明等问题;NVM作为SCM时,应用程序通过存取(load/store)接口直接对其进行访问,绕过了文件系统等权限管理和一致性管理机制。针对这些问题,文中总结了磨损均衡、减少写操作、减少写入量、内存加密、设计一致性机制、设计权限管理机制等解决办法;最后从硬件、操作系统以及编程模型层面探讨了仍须关注的NVM安全问题。展开更多
文摘大数据时代的来临为存储系统提供了新的机遇,同时也提出了新的挑战。传统的基于动态随机存储(DRAM)的内存架构面临着容量、能耗、可靠性等方面的问题;新型非易失存储器件(Non-Volatile Memory,NVM)具有非易失、字节寻址、空闲能耗低等优势,可以作为外存、内存或存储级内存(Storage Class Memory,SCM),为未来存储系统的变革提供了新选择,但同时也存在一些安全问题。NVM器件本身的耐久性有限,频繁对某一位置进行写操作时会造成该位置磨损,从而缩短设备的寿命;同时,由于具有非易失性,NVM被用作内存时,断电后数据不会丢失,攻击者可以通过窃取数据来提取敏感信息或对数据进行篡改;当NVM与DRAM构成混合内存时,可能会产生指针指向不明等问题;NVM作为SCM时,应用程序通过存取(load/store)接口直接对其进行访问,绕过了文件系统等权限管理和一致性管理机制。针对这些问题,文中总结了磨损均衡、减少写操作、减少写入量、内存加密、设计一致性机制、设计权限管理机制等解决办法;最后从硬件、操作系统以及编程模型层面探讨了仍须关注的NVM安全问题。