期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进U-Net模型的高分辨率遥感影像中城市建筑物的提取
被引量:
5
1
作者
秦梦宇
刘勇
+2 位作者
张寅丹
张洋
侯建西
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第2期254-261,269,共9页
针对高分辨率遥感影像中城市建筑物周围环境复杂多样,易被阴影遮挡,难以精细化提取的问题,提出一种改进的U-Net网络用于图像中的城市建筑物提取.该网络在标准U-Net网络的编码器末端嵌入双重注意力模块,可以通过捕获全局建筑物信息和长...
针对高分辨率遥感影像中城市建筑物周围环境复杂多样,易被阴影遮挡,难以精细化提取的问题,提出一种改进的U-Net网络用于图像中的城市建筑物提取.该网络在标准U-Net网络的编码器末端嵌入双重注意力模块,可以通过捕获全局建筑物信息和长通道建筑物信息,实现建筑物特征的增强.在交叉熵损失函数的基础上加入Lovász损失函数,构成的复合损失函数增强了对建筑物提取结果的约束能力,进一步提高了模型的鲁棒性.将该模型在美国马萨诸塞州数据集上进行验证,提取建筑物的F1-score为87.83%.结果表明,本方法对高分辨率遥感影像中周围环境复杂多样、被阴影遮挡的城市建筑物具有较强的提取能力.
展开更多
关键词
高分辨率遥感影像
城市建筑物提取
U-Net
双重注意力模块
复合损失函数
深度学习
下载PDF
职称材料
题名
基于改进U-Net模型的高分辨率遥感影像中城市建筑物的提取
被引量:
5
1
作者
秦梦宇
刘勇
张寅丹
张洋
侯建西
机构
兰州大学
资源环境学院
兰州大学超算中心
河北长风信息技术有限公司
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第2期254-261,269,共9页
基金
国家自然科学基金项目(41271360)。
文摘
针对高分辨率遥感影像中城市建筑物周围环境复杂多样,易被阴影遮挡,难以精细化提取的问题,提出一种改进的U-Net网络用于图像中的城市建筑物提取.该网络在标准U-Net网络的编码器末端嵌入双重注意力模块,可以通过捕获全局建筑物信息和长通道建筑物信息,实现建筑物特征的增强.在交叉熵损失函数的基础上加入Lovász损失函数,构成的复合损失函数增强了对建筑物提取结果的约束能力,进一步提高了模型的鲁棒性.将该模型在美国马萨诸塞州数据集上进行验证,提取建筑物的F1-score为87.83%.结果表明,本方法对高分辨率遥感影像中周围环境复杂多样、被阴影遮挡的城市建筑物具有较强的提取能力.
关键词
高分辨率遥感影像
城市建筑物提取
U-Net
双重注意力模块
复合损失函数
深度学习
Keywords
high-resolution remote sensing image
urban building extraction
U-Net
double attention module
composite loss function
deep learning
分类号
P237 [天文地球—摄影测量与遥感]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进U-Net模型的高分辨率遥感影像中城市建筑物的提取
秦梦宇
刘勇
张寅丹
张洋
侯建西
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2022
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部