本研究利用冬小麦起身期和拔节期冠层光谱数据,选用反映冬小麦长势信息的优化土壤调节植被指数OSAVI(Optimization of soil-adjusted vegetation index)与CERES-Wheat模型相结合进行变量施肥管理(变量区),对变量施肥模型进行验证并进行...本研究利用冬小麦起身期和拔节期冠层光谱数据,选用反映冬小麦长势信息的优化土壤调节植被指数OSAVI(Optimization of soil-adjusted vegetation index)与CERES-Wheat模型相结合进行变量施肥管理(变量区),对变量施肥模型进行验证并进行了优化,旨在为变量施肥提供理论依据。展开更多
文摘本研究利用冬小麦起身期和拔节期冠层光谱数据,选用反映冬小麦长势信息的优化土壤调节植被指数OSAVI(Optimization of soil-adjusted vegetation index)与CERES-Wheat模型相结合进行变量施肥管理(变量区),对变量施肥模型进行验证并进行了优化,旨在为变量施肥提供理论依据。