现有方面级情感分析研究大多数往往从文本数据本身进行情感分析,而没有充分利用领域知识,忽略了语义依存信息的重要性,使得方面表示受噪声信息影响严重,出现噪声词注意权重高的可能。针对以上问题,结合领域知识,提出了一种剪枝算法和语...现有方面级情感分析研究大多数往往从文本数据本身进行情感分析,而没有充分利用领域知识,忽略了语义依存信息的重要性,使得方面表示受噪声信息影响严重,出现噪声词注意权重高的可能。针对以上问题,结合领域知识,提出了一种剪枝算法和语义-注意力机制相结合的方法(Pruning And Semantic At tention,PASA)针对服务领域特定方面进行情感分类。方法一方面结合领域知识对文本对应的语义依存树进行剪枝实现方面信息降噪,另一方面,通过利用语义-注意力机制进行增强并精确捕获方面的上下文描述信息,从而实现对方面情感极性的判断。为了验证所提出方法的正确性和有效性,在物流数据集、酒店评论数据集及SemEval 2014的Restaurant数据集进行了大量实验,结果表明,所提出的方法相对于其它方法具有明显优势,在垂直领域具有较好的应用前景。展开更多
文摘现有方面级情感分析研究大多数往往从文本数据本身进行情感分析,而没有充分利用领域知识,忽略了语义依存信息的重要性,使得方面表示受噪声信息影响严重,出现噪声词注意权重高的可能。针对以上问题,结合领域知识,提出了一种剪枝算法和语义-注意力机制相结合的方法(Pruning And Semantic At tention,PASA)针对服务领域特定方面进行情感分类。方法一方面结合领域知识对文本对应的语义依存树进行剪枝实现方面信息降噪,另一方面,通过利用语义-注意力机制进行增强并精确捕获方面的上下文描述信息,从而实现对方面情感极性的判断。为了验证所提出方法的正确性和有效性,在物流数据集、酒店评论数据集及SemEval 2014的Restaurant数据集进行了大量实验,结果表明,所提出的方法相对于其它方法具有明显优势,在垂直领域具有较好的应用前景。