期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于语义-注意力机制的方面级情感分类
1
作者 张换香 刘璐瑶 +1 位作者 张景 惠丽峰 《计算机仿真》 2024年第7期366-375,共10页
现有方面级情感分析研究大多数往往从文本数据本身进行情感分析,而没有充分利用领域知识,忽略了语义依存信息的重要性,使得方面表示受噪声信息影响严重,出现噪声词注意权重高的可能。针对以上问题,结合领域知识,提出了一种剪枝算法和语... 现有方面级情感分析研究大多数往往从文本数据本身进行情感分析,而没有充分利用领域知识,忽略了语义依存信息的重要性,使得方面表示受噪声信息影响严重,出现噪声词注意权重高的可能。针对以上问题,结合领域知识,提出了一种剪枝算法和语义-注意力机制相结合的方法(Pruning And Semantic At tention,PASA)针对服务领域特定方面进行情感分类。方法一方面结合领域知识对文本对应的语义依存树进行剪枝实现方面信息降噪,另一方面,通过利用语义-注意力机制进行增强并精确捕获方面的上下文描述信息,从而实现对方面情感极性的判断。为了验证所提出方法的正确性和有效性,在物流数据集、酒店评论数据集及SemEval 2014的Restaurant数据集进行了大量实验,结果表明,所提出的方法相对于其它方法具有明显优势,在垂直领域具有较好的应用前景。 展开更多
关键词 方面级情感分类 服务领域 语义依存分析 剪枝 注意力机制
下载PDF
基于方面级情感分析的深度语义挖掘模型
2
作者 张换香 彭俊杰 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2307-2319,共13页
方面级情感分析是一种细粒度的情感分类任务,具有广泛的应用前景,正因为如此,得到了广泛关注与研究,尤其是近年来,基于依赖树的图神经网络和基于注意力的网络模型的研究取得了较大进展.但是,由于在线评论表达的复杂性和依赖关系不易解... 方面级情感分析是一种细粒度的情感分类任务,具有广泛的应用前景,正因为如此,得到了广泛关注与研究,尤其是近年来,基于依赖树的图神经网络和基于注意力的网络模型的研究取得了较大进展.但是,由于在线评论表达的复杂性和依赖关系不易解析使得这些方法在情感分析的性能上得不到有效提升.为了克服这些挑战,本文提出了一种同时考虑句法语义和上下文语义的深度语义挖掘模型(Deep Semantic Mining Model,DSMM).具体地,为了深度挖掘句法背后隐含的深度语义,模型采用并行的图卷积和多头注意力机制挖掘丰富的语义;为了充分利用句法语义和上下文语义的内在关联关系,采用了关联注意力机制获取句法语义和上下文语义的相关性,并且采用自适应方面路由机制有效获取方面的情感语义,并在此基础上,通过引入基于依赖树的语义位置嵌入,进一步增强方面-意见词的关联.在三个公共数据集上的实验结果表明,该模型在复杂句情感分析中既能从不同语义空间挖掘句子的语义特征,也能有效利用句法特征强化句子的语义表征,在分类准确率和泛化能力上的表现优于相关工作. 展开更多
关键词 方面级情感分析 图卷积神经网络 多头注意力机制 关联注意力 句法 上下文语义
下载PDF
基于跨模态语义信息增强的多模态情感分析
3
作者 李梦云 张景 +2 位作者 张换香 张晓琳 刘璐瑶 《计算机科学与探索》 CSCD 北大核心 2024年第9期2476-2486,共11页
随着社交网络的发展,人类通过不同的方式表达自己的情感,包括文本、视觉和语音,即多模态。针对以往的多模态情感分析方法未能有效地获取多模态情感特征表示,以及没有充分考虑在多模态特征融合过程中冗余信息对实验的影响,提出了一种基... 随着社交网络的发展,人类通过不同的方式表达自己的情感,包括文本、视觉和语音,即多模态。针对以往的多模态情感分析方法未能有效地获取多模态情感特征表示,以及没有充分考虑在多模态特征融合过程中冗余信息对实验的影响,提出了一种基于跨模态语义信息增强的多模态情感分析模型。该模型采用BiLSTM网络挖掘各单模态内部存在的上下文信息。通过跨模态信息交互机制对多种模态间的信息交互进行建模,得到文本对语音、视觉,语音对文本、视觉,视觉对文本、语音六种信息交互特征,将目标模态相同的信息交互特征进行拼接,得到信息增强后的单模态特征向量,有效地获取模态间共享和补充的深度语义特征。另外,使用多头自注意力机制分别计算原始单模态特征向量和信息增强后的单模态特征向量间存在的语义相关性,提高识别关键情感特征的能力,降低冗余信息对情感分析的负面干扰。在公共数据集CMU-MOSI和CMU-MOSEI的实验结果表明,所提出的模型既能增强情感特征表示,也能有效降低冗余信息的干扰,在多模态情感分类准确率和泛化能力上的表现优于相关工作。 展开更多
关键词 多模态情感分析 信息增强 信息交互 多头注意力机制 特征融合
下载PDF
基于方面级情感分类的语义挖掘模型
4
作者 刘璐瑶 张换香 +1 位作者 张景 惠丽峰 《计算机时代》 2023年第6期65-68,75,共5页
方面级情感分类旨在确定句子中特定方面的情感极性。获取深层次方面级语义情感信息和方面级标记数据的缺乏是本领域研究的两个难点。本文提出一种基于语义注意力机制和胶囊网络的混合模型(SATTCap)。运用方面级归纳式迁移方式,将易获取... 方面级情感分类旨在确定句子中特定方面的情感极性。获取深层次方面级语义情感信息和方面级标记数据的缺乏是本领域研究的两个难点。本文提出一种基于语义注意力机制和胶囊网络的混合模型(SATTCap)。运用方面级归纳式迁移方式,将易获取的文档级评论知识中的情感语义迁移到方面级情感语义中,辅助方面级情感分类。另外基于重构语义依存的注意力机制提取深层次特征信息,采用方面路由方法,将深层次的方面级语义表示封装到语义胶囊中,然后采用Softmax预测。在公共数据集SemEval2014上对本文方法进行评估,结果表明,该模型在方面级情感分类任务上的表现是有效的。 展开更多
关键词 方面级 情感分类 注意力机制 胶囊网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部