期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
花后浅地下水埋深对小麦高光谱特征的影响及叶绿素估算模型 被引量:9
1
作者 吴启侠 晏军 +3 位作者 朱建强 李东伟 周新国 郭树龙 《灌溉排水学报》 CSCD 北大核心 2018年第9期29-35,共7页
江汉平原春季雨水较多,小麦中后期易受渍害。【目的】将高光谱遥感技术应用于渍害监测,为渍害监测提供一种无损、快捷的诊断方法。【方法】在小麦花后设置不同地下水埋深(0、20和40 cm)处理,分别于处理后8、17、28 d监测小麦冠层光谱反... 江汉平原春季雨水较多,小麦中后期易受渍害。【目的】将高光谱遥感技术应用于渍害监测,为渍害监测提供一种无损、快捷的诊断方法。【方法】在小麦花后设置不同地下水埋深(0、20和40 cm)处理,分别于处理后8、17、28 d监测小麦冠层光谱反射率和旗叶叶绿素量,分析了小麦花后浅地下水埋深对冠层高光谱特征的影响,并建立了叶绿素高光谱估算模型。【结果】小麦花后0 cm、20 cm地下水埋深持续17 d左右时,小麦冠层反射光谱中蓝紫光波段与红光波段形成的2个吸收谷比40 cm的平坦,而2个吸收谷之间的反射峰变陡,红边位置发生蓝移,且地下水埋深越浅,持续时间越长,2个吸收谷越平坦,蓝移位移越大。浅地下水埋深胁迫小麦旗叶叶绿素a(Chla)、叶绿素b(Chlb)、叶绿素(Chl(a+b))量分别与红边位置(λr)、红边偏度(Sr)以及红边峰度(Kr)呈线性、线性和一元二次曲线关系。选取λr、Sr、Kr三个特征因子作为网络输入层建立BP神经网络模型估算浅地下水埋深胁迫小麦旗叶Chla、Chlb、Chl(a+b)量,建立的模型其拟合精度高(决定系数R2分别为0.842 5、0.700 2、0.850 8、均方根误差RMSE分别为0.146、0.048、0.173)。【结论】以λr、Sr、Kr为输入层建立的BP神经网络模型可以作为估算浅地下水埋深胁迫小麦旗叶叶绿素量的高光谱估算模型。 展开更多
关键词 小麦 浅地下水埋深 高光谱 红边参数 BP神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部