基于次生盐渍土修复过程中硝酸盐含量和同步实测光谱数据,针对原始光谱数据及其不同变换后7种光谱数据集,分别以相关系数极值和间隔偏最小二乘2种方法分析其最佳敏感波段范围。在此基础上,运用偏最小二乘回归(partial least squares reg...基于次生盐渍土修复过程中硝酸盐含量和同步实测光谱数据,针对原始光谱数据及其不同变换后7种光谱数据集,分别以相关系数极值和间隔偏最小二乘2种方法分析其最佳敏感波段范围。在此基础上,运用偏最小二乘回归(partial least squares regression,PLSR)方法,分别基于全波段(400~1 650nm)和分析获得的最佳敏感波段建立了次生盐渍土壤NO-3含量的光谱反演模型。结果表明,采用2种方法提取的土壤最佳敏感波段,均集中在844.5和846.18nm;基于全波段与最佳敏感波段的土壤NO-3含量光谱反演模型,均以原始反射光谱经一阶微分处理的结果更为显著;其中,基于间隔偏最小二乘法提取的775~899和1 025~1 149nm为最佳敏感波段的预测模型,其决定系数R2p与标准差(root mean standard error of prediction,RMSEP)分别为0.962和0.057。该研究结果可为今后次生盐渍土中硝酸盐含量的快速无损检测提供重要的科学参考。展开更多
文摘基于次生盐渍土修复过程中硝酸盐含量和同步实测光谱数据,针对原始光谱数据及其不同变换后7种光谱数据集,分别以相关系数极值和间隔偏最小二乘2种方法分析其最佳敏感波段范围。在此基础上,运用偏最小二乘回归(partial least squares regression,PLSR)方法,分别基于全波段(400~1 650nm)和分析获得的最佳敏感波段建立了次生盐渍土壤NO-3含量的光谱反演模型。结果表明,采用2种方法提取的土壤最佳敏感波段,均集中在844.5和846.18nm;基于全波段与最佳敏感波段的土壤NO-3含量光谱反演模型,均以原始反射光谱经一阶微分处理的结果更为显著;其中,基于间隔偏最小二乘法提取的775~899和1 025~1 149nm为最佳敏感波段的预测模型,其决定系数R2p与标准差(root mean standard error of prediction,RMSEP)分别为0.962和0.057。该研究结果可为今后次生盐渍土中硝酸盐含量的快速无损检测提供重要的科学参考。