期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于密度的K-Means算法及在客户细分中的应用研究 被引量:11
1
作者 向坚持 刘相滨 资武成 《计算机工程与应用》 CSCD 北大核心 2008年第35期246-248,共3页
针对K-Means算法所存在的问题进行了深入研究,提出了基于密度的K-Means算法(KMAD算法)。该算法采用聚类对象区域空间的密度分布方法来确定聚类个数K的值,然后用高密度区域的质心作为K-Means算法的初始聚类中心。理论分析与实验结果表明... 针对K-Means算法所存在的问题进行了深入研究,提出了基于密度的K-Means算法(KMAD算法)。该算法采用聚类对象区域空间的密度分布方法来确定聚类个数K的值,然后用高密度区域的质心作为K-Means算法的初始聚类中心。理论分析与实验结果表明了改进算法的有效性和稳定性,并将改进的算法应用于客户细分研究中。 展开更多
关键词 K—Means算法 KMAD算法 密度 客户细分
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部