期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于主成分分析和学习向量量化神经网络的制动工况路面识别与验证
1
作者
郑国峰
陈文
傅涛
《汽车工程学报》
2023年第5期635-644,共10页
开展车辆制动时路面类型识别的研究,提出一种基于主成分分析-学习向量量化神经网络(Principal Component Analysis—Learning Vector Quantization,PCA-LVQ)的制动工况路面识别方法。利用主成分分析对多维度驾驶数据降维处理,提取能表...
开展车辆制动时路面类型识别的研究,提出一种基于主成分分析-学习向量量化神经网络(Principal Component Analysis—Learning Vector Quantization,PCA-LVQ)的制动工况路面识别方法。利用主成分分析对多维度驾驶数据降维处理,提取能表征路面特征的主要成分,采用学习向量量化神经网络对降维处理后的驾驶数据进行训练,并用于路面特征分类,使用制动工况下实车试验数据和硬件在环仿真数据进行验证。结果表明,所提出的PCA-LVQ算法能准确识别路面类型特征,路面识别的精度达到97%,与传统BP神经网络的路面类型特征识别精度提升7%;同时,在不同车速下,基于PCA-LVQ算法也能较准确地识别路面类型特征。
展开更多
关键词
主成分分析
学习向量量化神经网络
制动工况
路面类型特征识别
下载PDF
职称材料
题名
基于主成分分析和学习向量量化神经网络的制动工况路面识别与验证
1
作者
郑国峰
陈文
傅涛
机构
重庆交通大学机电与车辆工程学院
凯
晟
汽车
技术
(
上海
)
有限公司
出处
《汽车工程学报》
2023年第5期635-644,共10页
基金
国家自然科学基金项目(52305147)
重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX1266)
+1 种基金
中国博士后科学基金面上项目(2022M713438)
重庆市教委科学技术研究计划项目(KJQN2021000713)。
文摘
开展车辆制动时路面类型识别的研究,提出一种基于主成分分析-学习向量量化神经网络(Principal Component Analysis—Learning Vector Quantization,PCA-LVQ)的制动工况路面识别方法。利用主成分分析对多维度驾驶数据降维处理,提取能表征路面特征的主要成分,采用学习向量量化神经网络对降维处理后的驾驶数据进行训练,并用于路面特征分类,使用制动工况下实车试验数据和硬件在环仿真数据进行验证。结果表明,所提出的PCA-LVQ算法能准确识别路面类型特征,路面识别的精度达到97%,与传统BP神经网络的路面类型特征识别精度提升7%;同时,在不同车速下,基于PCA-LVQ算法也能较准确地识别路面类型特征。
关键词
主成分分析
学习向量量化神经网络
制动工况
路面类型特征识别
Keywords
principal component analysis
learning vector quantization neural network
braking conditions
pavement type feature recognition
分类号
U463.6 [机械工程—车辆工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于主成分分析和学习向量量化神经网络的制动工况路面识别与验证
郑国峰
陈文
傅涛
《汽车工程学报》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部