Controlling microbial proliferation in water systems,including wastewater,recreational water,and drinking water,is essential to societal health.Microbial inactivation through electrochemically generated reactive speci...Controlling microbial proliferation in water systems,including wastewater,recreational water,and drinking water,is essential to societal health.Microbial inactivation through electrochemically generated reactive species(RS)mediated pathways provides an effective route toward this microbial control.Herein we provide an overview of recent progress toward electrocatalytic generation of RS and their application in water disinfection,with a focus on the selective production of RS,the microorganism interactions with RS(including both RS mechanisms of action and innate microorganism responses to RS),and practical implementation of electrochemically generated RS for microbial inactivation.The article is concluded with a perspective where the challenges and opportunities of RS‐based electrochemical disinfection of water are highlighted,along with possible future research directions.展开更多
Intraparticle charge delocalization occurs when metal nanoparticles are functionalized with organic capping ligands through conjugated rnetal-ligand interfacial bonds. In this study, metal nanoparticles of 5d metals ...Intraparticle charge delocalization occurs when metal nanoparticles are functionalized with organic capping ligands through conjugated rnetal-ligand interfacial bonds. In this study, metal nanoparticles of 5d metals (Ir, Pt, and Au) and 4d metals (Ru, Rh, and Pd) were prepared and capped with ethynylphenylacetylene and the impacts of the number of metal d electrons on the nanoparticle optoelectronic properties were examined. Both FTIR and photoluminescence measurements indicate that intraparticle charge delocalization was en- hanced with the increase of the number of d electrons in the same period with palladium being an exception.展开更多
基金supported by the National Natural Science Foundation of China(NSFC 51402111),the National Natural Science Foundation of China(NSFC 21528301) for partial support of the workthe Fundamental Research Funds for Central Universities(SCUT Grant No.2153860)
文摘Controlling microbial proliferation in water systems,including wastewater,recreational water,and drinking water,is essential to societal health.Microbial inactivation through electrochemically generated reactive species(RS)mediated pathways provides an effective route toward this microbial control.Herein we provide an overview of recent progress toward electrocatalytic generation of RS and their application in water disinfection,with a focus on the selective production of RS,the microorganism interactions with RS(including both RS mechanisms of action and innate microorganism responses to RS),and practical implementation of electrochemically generated RS for microbial inactivation.The article is concluded with a perspective where the challenges and opportunities of RS‐based electrochemical disinfection of water are highlighted,along with possible future research directions.
基金supported,in part,by the National Science Foundation(DMR-1409396 and CHE-1710408)carried out at the National Center for Electron Microscopy and Molecular Foundry of Lawrence Berkeley National Laboratory,which is supported by the US Department of Energy
文摘Intraparticle charge delocalization occurs when metal nanoparticles are functionalized with organic capping ligands through conjugated rnetal-ligand interfacial bonds. In this study, metal nanoparticles of 5d metals (Ir, Pt, and Au) and 4d metals (Ru, Rh, and Pd) were prepared and capped with ethynylphenylacetylene and the impacts of the number of metal d electrons on the nanoparticle optoelectronic properties were examined. Both FTIR and photoluminescence measurements indicate that intraparticle charge delocalization was en- hanced with the increase of the number of d electrons in the same period with palladium being an exception.