期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于云和高斯过程的网联车辆协同式道路参数估计 被引量:1
1
作者 LI Zhaojian HAJIDAVALLOO Mohammad R +1 位作者 XIA Xin ZHENG Minghui 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第4期489-496,共8页
近年来智能网联汽车发展迅速,云端预先存储的道路参数信息对于提升网联汽车的悬架控制以及检测路面不规则度至关重要。目前关于道路参数估计的工作大多在单个车辆上完成,此类算法对于车辆模型不确定性以及测量误差较敏感。针对该问题,... 近年来智能网联汽车发展迅速,云端预先存储的道路参数信息对于提升网联汽车的悬架控制以及检测路面不规则度至关重要。目前关于道路参数估计的工作大多在单个车辆上完成,此类算法对于车辆模型不确定性以及测量误差较敏感。针对该问题,提出了一种新的协同式估计架构,该架构能够充分利用多个同质的网联汽车的测量信息以提高估计精度。首先,在云端利用前方行驶的全部车辆的数据对高斯过程模型进行训练以通过众包方式获取道路参数的估计结果。然后,该结果以未测量的方式发送到后方相邻车辆,后方单个车辆结合自车车载传感器(如加速度计、横摆角速度以及侧倾角速度)和由云端获取的基于众包高斯过程估计结果,使用卡尔曼滤波对该估计结果进一步优化。进而估计结果被发送到云端以更新高斯过程模型。大量的仿真实验结果表明,以该种方式使用云端估计的道路参数作为额外的未测量信息能够提高道路参数的估计精度,验证了该算法的有效性。 展开更多
关键词 云端估计 协同式估计 道路参数估计 高斯过程
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部