-
题名面向深度学习加速器的安全加密方法
被引量:8
- 1
-
-
作者
左鹏飞
华宇
谢新锋
胡杏
谢源
冯丹
-
机构
武汉光电国家研究中心(华中科技大学)
华中科技大学计算机学院
加州大学圣芭芭拉分校加利福利亚圣芭芭拉
-
出处
《计算机研究与发展》
EI
CSCD
北大核心
2019年第6期1161-1169,共9页
-
基金
国家自然科学基金项目(61772212,61821003)~~
-
文摘
随着机器学习特别是深度学习技术的飞速发展,其应用场景也越来越广,并逐渐从云计算向边缘计算上扩展.在深度学习中,深度学习模型作为模型提供商的知识产权是非常重要的数据.发现部署在边缘计算设备上的深度学习加速器有泄露在其上存储的深度学习模型的风险.攻击者通过监听深度学习加速器和设备内存之间的总线就能很容易地截获到深度学习模型数据,所以加密该内存总线上的数据传输是非常重要的.但是,直接地在加速器上使用内存加密会极大地降低加速器的性能.为了解决这个问题,提出了一个有效的安全深度学习加速器架构称作COSA.COSA通过利用计数器模式加密不仅提高了加速器的安全性,而且能够把解密操作从内存访问的关键路径中移走来极大地提高加速器性能.在GPGPU-Sim上实现了提出的COSA架构,并使用神经网络负载测试了其性能.实验结果显示COSA相对于直接加密的架构提升了3倍以上的性能,相对于一个不加密的加速器性能只下降了13%左右.
-
关键词
机器学习
加速器
边缘设备
安全
总线监听攻击
-
Keywords
machine learning
accelerator
edge device
security
bus snooping attack
-
分类号
TP302
[自动化与计算机技术—计算机系统结构]
-